## Asymptotic StatisticsHere is a practical and mathematically rigorous introduction to the field of asymptotic statistics. In addition to most of the standard topics of an asymptotics course--likelihood inference, M-estimation, the theory of asymptotic efficiency, U-statistics, and rank procedures--the book also presents recent research topics such as semiparametric models, the bootstrap, and empirical processes and their applications. The topics are organized from the central idea of approximation by limit experiments, one of the book's unifying themes that mainly entails the local approximation of the classical i.i.d. set up with smooth parameters by location experiments involving a single, normally distributed observation. |

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Contents

Stochastic Convergence | 5 |

Delta Method | 25 |

Moment Estimators | 35 |

Contiguity | 85 |

Local Asymptotic Normality | 92 |

Efficiency of Estimators | 108 |

Limits of Experiments | 125 |

Bayes Procedures | 138 |

Likelihood Ratio Tests | 227 |

ChiSquare Tests | 242 |

Stochastic Convergence in Metric Spaces | 255 |

Empirical Processes | 265 |

Functional Delta Method | 291 |

Quantiles and Order Statistics | 304 |

LStatistics | 316 |

Bootstrap | 326 |

Projections | 153 |

Statistics | 161 |

Rank Sign and Permutation Statistics | 173 |

Relative Efficiency of Tests | 192 |

Efficiency of Tests | 215 |

Nonparametric Density Estimation | 341 |

Semiparametric Models | 358 |

433 | |

439 | |

### Other editions - View all

### Common terms and phrases

approximation assume asymptotic variance asymptotically efficient asymptotically normal asymptotically optimal bootstrap bounded central limit theorem Chapter chi-square confidence interval consistent continuous converges in distribution converges in probability converges to zero covariance matrix defined delta method density derivative differentiable in quadratic distribution function empirical distribution empirical process equal equation estimator 9n estimator sequence Example exists exponential finite Fisher information fixed follows function F Gaussian given hence inequality kernel large numbers likelihood ratio statistic limit distribution limit experiment linear map 9 maximal maximum likelihood estimator mean zero measurable function norm normal distribution null hypothesis observations obtain orthogonal parameter 9 power function preceding display projection proof quadratic mean quantile random sample random variables random vectors rank statistics right side satisfies score function sequence of tests sequence Tn Show standard normal submodel subset Suppose tangent set term underlying distribution uniform uniformly values