Methods in Bioengineering: Biomicrofabrication and Biomicrofluidics

Front Cover
Artech House, 2009 - Bioengineering - 352 pages
0 Reviews
This unique volume presents leading-edge microfluidics methods used to handle, manipulate, and analyze cells, particles, and biological components (e.g., proteins and DNA) for microdiagnostics. The authors offer clear and detailed guidance on microfabrication techniques utilized to create microfluidic devices and on-chip flow control and mixing Microsystems, protein and DNA handling devices for electrophoretic and isoelectric separations in microchromatography columns, microfluidic manipulations of droplets via electrowetting and particles via dielectrophoresis for separations and chemical reactions, integrated optical characterization of microfluidic devices, controlling chemical gradients within devices, microimmunoassay diagnostics, multiphase microfluidics used in droplet formation for controlled chemical reactions, particle separation and analysis in Micro-FACS systems, flow characterization techniques in microfluidic devices and patterning and utilizing cytoskeletal filaments and cellular transport protein within microstructures.
 

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

72 Integrated optical systems
185
722 Fluorescence detection
188
723 Chemiluminescence detection
191
724 Interferometric detection
192
725 Surface plasmon resonance detection
194
73 Nanoengineered optical probes
195
731 Quantum dots
196
732 Upconverting phosphors
197

162 Wafer bonding methods
14
17 Sacrificial layer techniques
16
182 Electrical interconnection and wire bonding
17
183 Fluidic interconnection in microfluidic systems
18
19 Materials for microfluidic and bioMEMS applications
19
193 Elastomers
20
197 Thick positive resists
21
1910 Polycarbonate
22
References
25
Micropumping and Microvalving
31
21 Introduction
32
22 Actuators for micropumps and microvalves
33
221 Pneumatic actuators
35
222 Thermopneumatic actuators
36
223 Solidexpansion actuators
37
224 Bimetallic actuators
38
227 Electrostatic actuators
39
229 Electrochemical actuators
40
2210 Chemical actuators
41
2211 Capillaryforce actuators
42
231 Mechanical pump
43
232 Nonmechanical pump
48
24 Microvalves
51
241 Mechanical valve
52
242 Nonmechanical valve
54
25 Outlook
55
27 Summary points
56
Micromixing Within Microfluidic Devices
59
31 Introduction
60
32 Materials
62
323 Optical assembly
63
33 Experimental design and methods
64
332 Active micromixers
70
333 Multiphase mixers
75
34 Data acquisition anticipated results and interpretation
77
342 Performance metrics extent of mixing reaction monitoring
78
36 Troubleshooting
79
References
80
4 OnChip Electrophoresis and Isoelectric Focusing Methods for Quantitative Biology
83
41 Introduction
84
412 Biomedical applications of onchip electrophoresis
88
42 Materials
89
422 Facilitiesequipment
91
431 On chip polyacrylamide gel electrophoresis PAGE
92
432 Polyacrylamide gel electrophoresis based isoelectric focusing
96
433 Data acquisition anticipated results and interpretation
102
434 Results and discussion
103
44 Discussion of pitfalls
105
Acknowledgments
108
Electrowetting
111
51 Introduction
112
512 Droplet manipulation using electrowetting
113
513 Digital microfluidic labonachip for clinical diagnostics
115
522 Liquid reservoirs
116
53 Materials
117
532 Fabrication materials
118
54 Device Fabrication
119
543 Dielectric deposition
120
544 Fabrication of the top plate
121
552 System assembly
122
56 Methods
123
563 Dropletbased immunoassay
125
572 Automated glucose assay onchip
126
573 Optimization of magnetic bead washing
127
58 Method challenges
129
59 Summary points
131
Dielectrophoresis for Particle and Cell Manipulations
133
physical origins of DEP
134
theory of dielectrophoresis
135
621 Limiting assumptions and typical experimental conditions
138
equipment for generating electric field nonuniformities and DEP forces
145
632 Electric field phase
147
633 Geometry
149
data acquisition anticipated results and interpretation
152
642 Electrodebased dielectrophoresis
156
643 Insulative dielectrophoresis
163
644 Summary of experimental parameters
168
65 Troubleshooting
169
662 Particle sorting and fractionation
172
663 Singleparticle trapping
175
References
177
Optical Microfluidics for Molecular Diagnostics
183
71 Introduction
184
734 Localized surface plasmon resonance
198
735 SPR with nanohole gratings
200
74 Conclusions
203
Acknowledgments
204
Neutrophil Chemotaxis Assay from Whole Blood Samples
209
81 Introduction
210
83 Materials
213
842 Surface treatment
215
843 Chemotaxis assay
216
85 Data acquisition
220
Appendix 8A
221
References
223
Microfluidic Immunoassays
225
91 Introduction
226
911 Microfluidic immunoassay designoperation considerations
227
92 Materials
230
922 Pumps and interconnections
231
932 Sample and reagent delivery
233
94 Data acquisition and results
236
942 CGIA
237
95 Discussion
239
952 CGIA
240
953 Challenges of analyzing complex samples
241
Acknowledgments
242
Droplet Based Microfluidics by ShearDriven Microemulsions
245
101 Introduction
246
102 Biomedical applications of droplet microfluidics
248
1022 Particle formation
249
1023 Therapeutic delivery
252
103 Materials
253
104 Methods
255
1043 Hydrophobic surface treatment
257
1045 Generation of droplets
258
105 Data acquisition
259
1052 Highspeed cameras
261
1053 Conventional imaging methods
262
Acknowledgments
263
MicroFACS System
267
111 Introduction
268
112 Materials
269
113 Methods
270
114 Results
274
115 Discussion of pitfalls
275
116 Statistical analysis
276
117 Application notes
277
118 Summary points
278
Acknowledgments
279
Optical Flow CharacterizationMicroparticle Image Velocimetry μPIV
281
121 Introduction
282
122 Materials and methods
283
1222 Volume illumination
285
1223 Processing algorithms
287
123 Measurement procedures
292
124 Discussion and commentary
293
1242 Particle size effects
294
1244 Velocity errors
296
1245 Other flow visualization techniques based on PIV
297
125 Summary points
300
126 Application notes
301
1262 PIVbased thermometry
303
127 Future developments
307
Microtubule Motors in Microfluidics
311
131 Introduction
312
1321 Kinesin expression and purification materials
313
1322 Tubulin purification materials
314
1323 Microtubule gliding assay materials
315
1324 Microfabrication materials
316
133 Methods
317
1332 Tubulin purification and labeling
319
1333 Standard protocol for the microtubule gliding assay
323
1334 Design considerations for integrating motor proteins into microfluidic devices
324
1335 Fabricating enclosed glass channels for microtubule transport
326
134 Results
329
135 Discussion of pitfalls
331
1351 Kinesin purification
332
1353 Motility assays
333
1354 Motility in microchannels
334
1355 Final comments
336
About the Editor
339
List of Contributors
340
Index
343
Copyright

Other editions - View all

Common terms and phrases

Bibliographic information