Practical Ship Hydrodynamics

Front Cover
Butterworth-Heinemann, Aug 21, 2000 - Nature - 270 pages
Introduction; Overview of problems and approaches; Model test and similarity laws; Full scale tests; Numerical approaches (Computational Fluid Dynamics); Basic equations, Basic techniques; Applications. Propeller Flows: Propeller geometry and other basics, Propeller curves; Numerical methods for propeller design; Lifting line theory; Lifting surface theory; BEM for propellers; Field methods; Cavitation; Experimental approach; Propeller design procedure. Resistance and propulsion: Resistance and propulsion concepts; Interaction between ship and propeller; Decomposition of resistance; Experimental approach; Towing tanks and experimental set up; Resistance test; Method ITTC 1957; Method of Hughes-Prohaska; Propulsion test; Additional resistance under service conditions; Simple design approaches; CFD approaches for steady flow; Wave resistance computations; Viscous flow computations; Problems for fast and unconventional ships. Ship Seakeeping: Introduction to seakeeping; Experimental approaches (model and full-scale); Waves and seaway; Airy waves (harmonic waves of small amplitude); Natural seaway; Wind and seaway; Wave climate; Numerical prediction of ship seakeeping; Overview of computational methods; Strip method; Rankine panel methods; Problems for fast and unconventional ships; Further quantities in regular waves; Ship responses in stationary seaway; Simulation methods; Long-term distributions; Slamming. Manoeuvring: Simulation of manoeuvring with known coefficients; Coordinate systems and definitions; Body forces and manoeuvring motions; Linear motion equations; CFD for manoeuvring; Experimental approaches; Manoeuvring tests for full-scale ships in sea trials; Model tests; Rudders; Computation of body forces; Slender-body theory; Influence of heel; Shallow-water effect; Jet thrusters; Stop manoeuvres. Boundary element methods: Green function formulation; Integral equations; Source elements; Point source; Regular first-order panel; Jensen panel; Higher-order panel; Vortex elements; Dipole elements; Point dipole. Numerical examples for BEM: Two-dimensional body in infinite flow; Theory; Numerical implementation.
 

Contents

Chapter 1 Introduction
1
Chapter 2 Propellers
37
Chapter 3 Resistance and propulsion
62
Chapter 4 Ship seakeeping
98
Chapter 5 Ship manoeuvring
151
Chapter 6 Boundary element methods
207
Chapter 7 Numerical example for BEM
236
References
265
Index
269
Copyright

Other editions - View all

Common terms and phrases