Statistical Physics I: Nonequilibrium statistical mechanics. Vol. 2This introduction to the fundamental theories of equilibrium statistical mechanics is self-contained and easily accessible to undergraduate students. Fundamental principles and simple physical examples are particularly emphasized. In preparation: R. Kubo et al., Statistical Physics II. (Springer Series in Solid-State Sciences, Vol. 31). 2nd ed. 1991. ISBN 3-540-53833-X |
Contents
I | 1 |
III | 3 |
IV | 4 |
V | 9 |
VI | 11 |
VII | 17 |
VIII | 19 |
IX | 21 |
LXVIII | 119 |
LXIX | 121 |
LXXI | 124 |
LXXIII | 126 |
LXXIV | 127 |
LXXV | 128 |
LXXVI | 129 |
LXXVII | 131 |
X | 24 |
XI | 27 |
XIII | 28 |
XIV | 29 |
XV | 31 |
XVII | 32 |
XVIII | 34 |
XIX | 35 |
XXI | 38 |
XXII | 39 |
XXIII | 41 |
XXIV | 43 |
XXV | 44 |
XXVI | 47 |
XXVII | 49 |
XXVIII | 51 |
XXIX | 54 |
XXX | 55 |
XXXI | 58 |
XXXII | 60 |
XXXIII | 62 |
XXXIV | 63 |
XXXV | 64 |
XXXVI | 66 |
XXXVII | 69 |
XXXIX | 71 |
XL | 74 |
XLI | 76 |
XLII | 77 |
XLIII | 78 |
XLIV | 80 |
XLV | 84 |
XLVI | 86 |
XLVII | 87 |
XLIX | 88 |
LI | 90 |
LII | 93 |
LIII | 94 |
LV | 95 |
LVII | 97 |
LVIII | 98 |
LIX | 99 |
LX | 101 |
LXI | 102 |
LXII | 107 |
LXIII | 108 |
LXIV | 113 |
LXVI | 115 |
LXVII | 116 |
LXXVIII | 132 |
LXXIX | 133 |
LXXX | 134 |
LXXXI | 136 |
LXXXIII | 138 |
LXXXIV | 143 |
LXXXV | 144 |
LXXXVII | 146 |
LXXXVIII | 147 |
LXXXIX | 148 |
XC | 150 |
XCI | 152 |
XCII | 156 |
XCIII | 160 |
XCIV | 162 |
XCV | 165 |
XCVI | 167 |
XCVII | 169 |
XCVIII | 170 |
CII | 173 |
CIII | 175 |
CIV | 176 |
CV | 179 |
CVI | 180 |
CVII | 181 |
CVIII | 182 |
CIX | 183 |
CX | 185 |
CXI | 188 |
CXII | 189 |
CXIII | 191 |
CXIV | 193 |
CXV | 194 |
CXVII | 196 |
CXVIII | 198 |
CXIX | 201 |
CXX | 206 |
CXXI | 211 |
CXXII | 217 |
CXXIII | 218 |
CXXIV | 220 |
CXXV | 222 |
CXXVII | 227 |
CXXVIII | 235 |
CXXIX | 236 |
241 | |
243 | |
249 | |
Other editions - View all
Statistical Physics I: Equilibrium Statistical Mechanics Morikazu Toda,Ryogo Kubo,Nobuhiko Saito Limited preview - 2012 |
Common terms and phrases
according approximation assume average becomes Bose calculate called classical condition Consequently consider constant coordinate corresponding critical curve defined denotes density derived determined discussed distribution dynamical eigenvalue energy ensemble entropy equal equation equilibrium ergodic example exists expansion expressed Fermi field fixed point given gives Hamiltonian holds ideal increasing independent initial integral interaction invariant lattice limit magnetic matrix means measure method microscopic mode molecules motion N₁ obtained particles partition function phase phase space phase transition physics positive potential pressure probability problem properties proportional quantity quantum mechanics region relation represented respect result Sect shown side space specific heat spin statistical mechanics sufficiently surface temperature term theorem theory thermodynamic transformation variables volume wave write written zero