Basic Engineering Plasticity: An Introduction with Engineering and Manufacturing ApplicationsPlasticity is concerned with understanding the behavior of metals and alloys when loaded beyond the elastic limit, whether as a result of being shaped or as they are employed for load bearing structures. Basic Engineering Plasticity delivers a comprehensive and accessible introduction to the theories of plasticity. It draws upon numerical techniques and theoretical developments to support detailed examples of the application of plasticity theory. This blend of topics and supporting textbook features ensure that this introduction to the science of plasticity will be valuable for a wide range of mechanical and manufacturing engineering students and professionals.

What people are saying  Write a review
We haven't found any reviews in the usual places.
Contents
33  
CHAPTER 3 YIELD CRITERIA  65 
CHAPTER 4 NONHARDENING PLASTICITY  95 
CHAPTER 5 ELASTICPERFECT PLASTICITY  127 
CHAPTER 6 SLIP LINE FIELDS  161 
CHAPTER 7 LIMIT ANALYSIS  213 
CHAPTER 8 CRYSTAL PLASTICITY  241 
CHAPTER 9 THE FLOW CURVE  269 
Other editions  View all
Basic Engineering Plasticity: An Introduction with Engineering and ... David W. A. Rees No preview available  2006 
Common terms and phrases
anisotropy applied axes axis becomes buckling coordinates coefficient compressive condition constant corresponding cylinder defined deformation deſ deviatoric displacement displacement vector elastic elasticplastic Equation equivalent plastic strain equivalent stress extrusion Figure flow curve flow rule follows force friction given gives gradient grain hardening Hencky hodograph initial yield instability isotropic loading material matrix Mech metal Mises normal normalised orthogonal orthotropic plane strain plane stress plastic strain increment pole PrandtlReuss predictions pressure principal stress radial radius ratio residual stress roll rotation shear strain shear stress sheet shown in Fig shows slip line solution strain paths strain tensor stress and strain stress components stress distributions stress plane stressstrain stressstrain curve Substituting tensile tension testpiece theory thickness torque torsion Tresca uniaxial vector velocity discontinuities wave yield criterion yield function yield locus yield point yield stress yield surface zone
Popular passages
Page 6  Fig. 2.2: the first subscript to the symbol a represents the direction of the stress, and the second the direction of the surface normal. By convention, an outward normal stress acting on the fluid in the...
Page 42  ... and two space coordinates, x and y. As is standard in boundarylayer theory, x is taken to be the distance measured along the surface (which may be curved) and y is the distance normal to the surface. The turbulence is three dimensional, with velocity components u', v', and w' in the x, y, and z directions, respectively.