Galaxy Formation and Mergers with Stars and Massive Black Holes

Front Cover
Stanford University, 2011
While mounting observational evidence suggests the coevolution of galaxies and their embedded massive black holes (MBHs), a comprehensive astrophysical understanding which incorporates both galaxies and MBHs has been missing. To tackle the nonlinear processes of galaxy formation, we develop a state-of-the-art numerical framework which self-consistently models the interplay between galactic components: dark matter, gas, stars, and MBHs. Utilizing this physically motivated tool, we present an investigation of a massive star-forming galaxy hosting a slowly growing MBH in a cosmological LCDM simulation. The MBH feedback heats the surrounding gas and locally suppresses star formation in the galactic inner core. In simulations of merging galaxies, the high-resolution adaptive mesh allows us to observe widespread starbursts via shock-induced star formation, and the interplay between the galaxies and their embedding medium. Fast growing MBHs in merging galaxies drive more frequent and powerful jets creating sizable bubbles at the galactic centers. We conclude that the interaction between the interstellar gas, stars and MBHs is critical in understanding the star formation history, black hole accretion history, and cosmological evolution of galaxies. Expanding upon our extensive experience in galactic simulations, we are well poised to apply this tool to other challenging, yet highly rewarding tasks in contemporary astrophysics, such as high-redshift quasar formation.

Common terms and phrases

Bibliographic information