## A Treatise on Plane and Spherical Trigonometry: And Its Applications to Astronomy and Geodesy |

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Contents

180 | |

181 | |

182 | |

184 | |

185 | |

186 | |

188 | |

189 | |

12 | |

13 | |

16 | |

18 | |

20 | |

23 | |

25 | |

26 | |

27 | |

28 | |

29 | |

30 | |

31 | |

33 | |

34 | |

35 | |

36 | |

37 | |

38 | |

39 | |

40 | |

41 | |

43 | |

44 | |

50 | |

52 | |

55 | |

56 | |

57 | |

58 | |

60 | |

61 | |

63 | |

65 | |

66 | |

67 | |

69 | |

70 | |

72 | |

75 | |

77 | |

87 | |

91 | |

93 | |

95 | |

98 | |

99 | |

102 | |

103 | |

105 | |

106 | |

108 | |

110 | |

112 | |

114 | |

115 | |

116 | |

117 | |

126 | |

128 | |

129 | |

131 | |

132 | |

133 | |

134 | |

135 | |

137 | |

138 | |

140 | |

146 | |

147 | |

148 | |

149 | |

150 | |

152 | |

153 | |

154 | |

155 | |

157 | |

159 | |

165 | |

166 | |

167 | |

168 | |

169 | |

172 | |

173 | |

176 | |

177 | |

204 | |

205 | |

207 | |

208 | |

209 | |

211 | |

213 | |

214 | |

215 | |

216 | |

217 | |

218 | |

219 | |

220 | |

221 | |

222 | |

223 | |

224 | |

226 | |

229 | |

233 | |

234 | |

235 | |

236 | |

237 | |

238 | |

239 | |

240 | |

241 | |

242 | |

243 | |

244 | |

245 | |

247 | |

248 | |

250 | |

251 | |

252 | |

254 | |

255 | |

256 | |

257 | |

267 | |

268 | |

270 | |

272 | |

273 | |

274 | |

276 | |

277 | |

278 | |

279 | |

280 | |

281 | |

284 | |

286 | |

287 | |

288 | |

297 | |

298 | |

299 | |

301 | |

302 | |

303 | |

304 | |

309 | |

312 | |

313 | |

314 | |

316 | |

324 | |

325 | |

326 | |

328 | |

329 | |

330 | |

331 | |

332 | |

338 | |

339 | |

341 | |

342 | |

346 | |

348 | |

350 | |

352 | |

353 | |

359 | |

### Other editions - View all

A Treatise on Plane and Spherical Trigonometry: And Its Applications to ... Edward Albert Bowser No preview available - 2013 |

A Treatise on Plane and Spherical Trigonometry: And Its Applications to ... Edward Albert Bowser No preview available - 2015 |

### Common terms and phrases

algebraically altitude angle AOP angle of elevation azimuth base calculate celestial sphere centre circle circular measure colog common logarithms cos0 cos2 cosC cosec cosy cot r2 cot2 cotangent decimal places denote diff distance ecliptic equal equations EXAMPLES express feet Find log find the angle find the height find the number formulae Given find Given log Hence horizon hour angle hypotenuse integer latitude log cos log cot log sin log sine mantissa miles Multiply negative number whose logarithm observed obtained opposite perpendicular plane polar triangle positive Prove the following quadrant radian radius right angles right ascension right triangle secant sides Similarly sin A sin sin(s sin0 sin2 sin2a sin3 sinB sine sines and cosines solution Solve sphere spherical excess spherical triangle subtends subtract tan2 tangent triangle ABC trigonometric functions vertical yards

### Popular passages

Page 148 - In any triangle the square of any side is equal to the sum of the squares of the other two sides minus twice the product of these two sides and the cosine of their included angle.

Page 147 - Law of Sines. — In any triangle the sides are proportional to the sines of the opposite angles.

Page 278 - AB'C, we have by (4) cos a' — cos b cos c' + sin b sin c' cos B'AC, or cos(тг— a) = cos b cos(тг— c) + sin b sin(тт — C)COS(тг —A). .-. cos a = cos b cos с + sin b sin с cos A.

Page 278 - ... cos a = cos b cos с + sin b sin с cos A ; (2) cos b = cos a cos с + sin a sin с cos в ; ^ A. (3) cos с = cos a cos b + sin a sin b cos C.

Page 278 - A cos 6 = cos a cos c + sin a sin c cos B cos c = cos a cos 6 + sin a sin 6 cos C Law of Cosines for Angles cos A = — cos B...

Page 6 - Radian is the angle subtended, at the centre of a circle, by an arc equal in length to the radius...

Page 17 - If the cosine of A be subtracted from unity, the remainder is called the versed sine of A. If the sine of A be...

Page 89 - The logarithm of any power of a number is equal to the logarithm of the number multiplied by the exponent of the power.

Page 149 - In every plane triangle, the sum of two sides is to their difference as the tangent of half the sum of the angles opposite those sides is to the tangent of half their difference.