Topics in Stochastic Processes

Front Cover
Stochastic Processes, Introduction, Covariance functions, Second order calculus, Karhunen-loeve expansion, Estimation problems, Notes; Spectral theory and prediction, Introduction, L Stochastic integrals, Decomposition of stationary processes, Examples of discrete parameter processes, Discrete parameter prediction: Special cases, Discrete parameter prediction: General solution, Examples of continuous parameter processes; Continuos parameter prediction special cases; yaglom's method, Some stochastic differential equations, Continuos parameter prediction: remarks on the general solution, Notes; Ergodic theory, Ergodicity and mixing, The pointwise ergodic theorem, Applications to real analysis, Applications to Markov chains, The Shannon-mcMillan theorem, Notes; Sample function analysis of continuous parameter stochastic processes, Separability, Measurability, One-Dimensional brownian motion, Law of the iterated logarithm, Markov processes, Processes with independent increments, Continuous parameter martingales, The strong Markov property, Notes; The ito integral and stochastic differential equations, Definitions of the ito integral, Existence and uniqueness theorems for stochastic differential equations, Stochastic differentials: A chain rule, Notes.

From inside the book

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

Spectral Theory and Prediction
50
Ergodic Theory
113
Sample Function Analysis of Continuous Parameter
161
Copyright

5 other sections not shown

Other editions - View all

Common terms and phrases

Bibliographic information