The Nothing that Is: A Natural History of ZeroA symbol for what is not there, an emptiness that increases any number it's added to, an inexhaustible and indispensable paradox. As we enter the year 2000, zero is once again making its presence felt. Nothing itself, it makes possible a myriad of calculations. Indeed, without zero mathematics as we know it would not exist. And without mathematics our understanding of the universe would be vastly impoverished. But where did this nothing, this hollow circle, come from? Who created it? And what, exactly, does it mean? Robert Kaplan's The Nothing That Is: A Natural History of Zero begins as a mystery story, taking us back to Sumerian times, and then to Greece and India, piecing together the way the idea of a symbol for nothing evolved. Kaplan shows us just how handicapped our ancestors were in trying to figure large sums without the aid of the zero. (Try multiplying CLXIV by XXIV). Remarkably, even the Greeks, mathematically brilliant as they were, didn't have a zeroor did they? We follow the trail to the East where, a millennium or two ago, Indian mathematicians took another crucial step. By treating zero for the first time like any other number, instead of a unique symbol, they allowed huge new leaps forward in computation, and also in our understanding of how mathematics itself works. In the Middle Ages, this mathematical knowledge swept across western Europe via Arab traders. At first it was called "dangerous Saracen magic" and considered the Devil's work, but it wasn't long before merchants and bankers saw how handy this magic was, and used it to develop tools like doubleentry bookkeeping. Zero quickly became an essential part of increasingly sophisticated equations, and with the invention of calculus, one could say it was a linchpin of the scientific revolution. And now even deeper layers of this thing that is nothing are coming to light: our computers speak only in zeros and ones, and modern mathematics shows that zero alone can be made to generate everything. Robert Kaplan serves up all this history with immense zest and humor; his writing is full of anecdotes and asides, and quotations from Shakespeare to Wallace Stevens extend the book's context far beyond the scope of scientific specialists. For Kaplan, the history of zero is a lens for looking not only into the evolution of mathematics but into very nature of human thought. He points out how the history of mathematics is a process of recursive abstraction: how once a symbol is created to represent an idea, that symbol itself gives rise to new operations that in turn lead to new ideas. The beauty of mathematics is that even though we invent it, we seem to be discovering something that already exists. The joy of that discovery shines from Kaplan's pages, as he ranges from Archimedes to Einstein, making fascinating connections between mathematical insights from every age and culture. A tour de force of science history, The Nothing That Is takes us through the hollow circle that leads to infinity. 
What people are saying  Write a review
User ratings
5 stars 
 
4 stars 
 
3 stars 
 
2 stars 
 
1 star 

LibraryThing Review
User Review  Wassilissa  LibraryThingRobert Kaplan's The Nothing That Is: A Natural History of Zero begins as a mystery story, taking us back to Sumerian times, and then to Greece and India, piecing together the way the idea of a symbol ... Read full review
LibraryThing Review
User Review  themulhern  LibraryThingThis book has a ton of fake profundity, probably meant to be humourous and probably the most complete treatment of the Babylonian number system in a popular work. The first half of the book has a lot ... Read full review
Contents
1  
4  
THE GREEKS HAD NO WORD FOR IT  14 
TRAVELERS TALES  28 
EASTWARD  36 
DUST  50 
INTO THE UNKNOWN  57 
A PARADIGM SHIFTS  68 
ENTERTAINING ANGELS  116 
ALMOST NOTHING  144 
IS IT OUT THERE?  175 
BATHHOUSE WITH SPIDERS  190 
A LAND WHERE IT WAS ALWAYS AFTERNOON  195 
WAS LEAR RIGHT?  203 
THE UNTHINKABLE  216 
220  
Other editions  View all
Common terms and phrases
answer appear Archimedes axioms becomes begin body calculation called century circle column comes counters counting course described divide empty equal equations example exist expressions fact factors figures follow give grains Greek hand hundred idea Indian infinite insight invention Italy keep kind language later laws least leaves less letter light lived look mathematicians mathematics matter means mind motion moved multiply names nature needed negative never numbers once past perhaps play positive problem proof question reason rules sand seems sense shift sort space stand symbol tell things third thought true truth turn Tzolkin understanding units universe whole wonder writing written wrote zero
Popular passages
Page 1  If you look at zero you see nothing; but look through it and you will see the world.