Algebraic Topology

Front Cover
Cambridge University Press, 2002 - Mathematics - 544 pages
In most major universities one of the three or four basic first-year graduate mathematics courses is algebraic topology. This introductory text is suitable for use in a course on the subject or for self-study, featuring broad coverage and a readable exposition, with many examples and exercises. The four main chapters present the basics: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature is the inclusion of many optional topics not usually part of a first course due to time constraints: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and Steenrod squares and powers.
 

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

II
ix
III
1
IV
4
V
6
VI
10
VII
17
IX
21
X
25
XLVIII
229
XLIX
235
L
245
LI
248
LII
257
LIII
264
LIV
277
LV
288

XI
30
XII
36
XIII
37
XIV
39
XV
46
XVI
52
XVII
56
XVIII
59
XIX
66
XX
79
XXI
83
XXII
93
XXIII
98
XXIV
100
XXV
104
XXVI
106
XXVII
109
XXVIII
124
XXIX
130
XXX
133
XXXI
145
XXXII
149
XXXIII
156
XXXIV
158
XXXV
162
XXXVI
165
XXXVII
173
XXXVIII
181
XL
186
XLII
193
XLIII
202
XLIV
207
XLV
214
XLVI
220
XLVII
226
LVI
299
LVII
307
LVIII
317
LIX
323
LX
333
LXI
335
LXII
336
LXIII
342
LXIV
344
LXV
348
LXVI
356
LXVIII
362
LXIX
371
LXX
380
LXXI
389
LXXII
401
LXXIII
406
LXXIV
411
LXXV
417
LXXVI
423
LXXVII
425
LXXVIII
427
LXXIX
444
LXXX
448
LXXXI
452
LXXXII
456
LXXXIII
462
LXXXIV
466
LXXXV
471
LXXXVI
483
LXXXVII
515
LXXXVIII
529
LXXXIX
535
Copyright

Other editions - View all

Common terms and phrases

Bibliographic information