A review of a posteriori error estimation and adaptive mesh-refinement techniques

Front Cover
Wiley-Teubner, Jun 11, 1996 - Mathematics - 127 pages
0 Reviews
Wiley-Teubner Series Advances in Numerical Mathematics Editors Hans Georg Bock Mitchell Luskin Wolfgang Hackbusch Rolf Rannacher A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques Rüdiger Verfürth Ruhr-Universität Bochum, Germany Self-adaptive discretization methods have gained an enormous importance for the numerical solution of partial differential equations which arise in physical and technical applications. The aim of these methods is to obtain a numerical solution within a prescribed tolerance using a minimal amount of work. The main tools utilised are a posteriori error estimators and indicators which are able to give global and local information on the error of the numerical solution, using only the computed numerical solution and known data of the problem. Presenting the most frequently used error estimators which have been developed by various scientists in the last two decades, this book demonstrates that they are all based on the same basic principles. These principles are then used to develop an abstract framework which is able to handle general nonlinear problems. The abstract results are applied to various classes of nonlinear elliptic partial differential equations from, for example, fluid and continuum mechanics, to yield reliable and easily computable error estimators. The book covers stationary problems but omits transient problems, where theory is often still too complex and not yet well developed.

From inside the book

What people are saying - Write a review

We haven't found any reviews in the usual places.


A Simple Model Problem
Abstract Nonlinear Equations

4 other sections not shown

Common terms and phrases