Kac Algebras Arising from Composition of Subfactors: General Theory and Classification, Volume 750 (Google eBook)

Front Cover
American Mathematical Soc., Jun 3, 2002 - Mathematics - 198 pages
0 Reviews
We deal with a map $\alpha$ from a finite group $G$ into the automorphism group $Aut({\mathcal L})$ of a factor ${\mathcal L}$ satisfying (i) $G=N \rtimes H$ is a semi-direct product, (ii) the induced map $g \in G \to [\alpha_g] \in Out({\mathcal L})=Aut({\mathcal L})/Int({\mathcal L})$ is an injective homomorphism, and (iii) the restrictions $\alpha \! \! \mid_N, \alpha \! \! \mid_H$ are genuine actions of the subgroups on the factor ${\mathcal L}$. The pair ${\mathcal M}={\mathcal L} \rtimes_{\alpha} H \supseteq {\mathcal N}={\mathcal L}^{\alpha\mid_N}$ (of the crossed product ${\mathcal L} \rtimes_{\alpha} H$ and the fixed-point algebra ${\mathcal L}^{\alpha\mid_N}$) gives us an irreducible inclusion of factors with Jones index $\# G$. The inclusion ${\mathcal M} \supseteq {\mathcal N}$ is of depth $2$ and hence known to correspond to a Kac algebra of dimension $\# G$. A Kac algebra arising in this way is investigated in detail, and in fact the relevant multiplicative unitary (satisfying the pentagon equation) is described. We introduce and analyze a certain cohomology group (denoted by $H^2((N,H),{\mathbf T})$) providing complete information on the Kac algebra structure, and we construct an abundance of non-trivial examples by making use of various cocycles. The operator algebraic meaning of this cohomology group is clarified, and some related topics are also discussed. Sector technique enables us to establish structure results for Kac algebras with certain prescribed underlying algebra structure. They guarantee that ``most'' Kac algebras of low dimension (say less than $60$) actually arise from inclusions of the form ${\mathcal L} \rtimes_{\alpha} H \supseteq {\mathcal L}^{\alpha\mid_N}$, and consequently their classification can be carried out by determining $H^2((N,H),{\mathbf T})$. Among other things we indeed classify Kac algebras of dimension $16$ and $24$, which (together with previously known results) gives rise to the complete classification of Kac algebras of dimension up to $31$. Partly to simplify classification procedure and hopefully for its own sake, we also study ``group extensions'' of general (finite-dimensional) Kac algebras with some discussions on related topics.

What people are saying - Write a review

We haven't found any reviews in the usual places.

Selected pages


Actions of matched pairs
Cocycles attached to the pentagon equation
Multiplicative unitary
Kac algebra structure
Grouplike elements
Examples of finitedimensional Kac algebras
Inclusions with the CoxeterDynkin graph D and the KacPaljutkin algebra
Structure theorems
Classification of certain Kac algebras
Classification of Kac algebras of dimension 16
Group extensions of general Kac algebras
2cocycles of Kac algebras
Classification of Kac algebras of dimension 24

Common terms and phrases

References to this book

All Book Search results »

Bibliographic information