Optical Fiber Telecommunications IV-A: Components

Front Cover
Ivan Kaminow, Tingye Li
Elsevier Science, May 22, 2002 - Science - 876 pages
0 Reviews
Volume IVA is devoted to progress in optical component research and development. Topics include design of optical fiber for a variety of applications, plus new materials for fiber amplifiers, modulators, optical switches, light wave devices, lasers, and high bit-rate electronics. This volume is an excellent companion to Optical Fiber Telecommunications IVB: Systems and Impairments (March 2002, ISBN: 0-12-3951739).

- Fourth in a respected and comprehensive series
- Authoritative authors from a range of organizations
- Suitable for active lightwave R&D designers, developers, purchasers, operators, students, and analysts
- Lightwave components reviewed in Volume A
-Lightwave systems and impairments reviewed in Volume B
- Up-to-the minute coverage

What people are saying - Write a review

We haven't found any reviews in the usual places.

Other editions - View all

References to this book

All Book Search results »

About the author (2002)

Ivan Kaminow retired from Bell Labs in 1996 after a 42-year career. He conducted seminal studies on electrooptic modulators and materials, Raman scattering in ferroelectrics, integrated optics, semiconductor lasers (DBR, ridge-waveguide InGaAsP and multi-frequency), birefringent optical fibers, and WDM networks. Later, he led research on WDM components (EDFAs, AWGs and fiber Fabry-Perot Filters), and on WDM local and wide area networks. He is a member of the National Academy of Engineering and a recipient of the IEEE Edison Medal, OSA Ives Medal, and IEEE Photonics Award. Since 2004, he has been Adjunct Professor of Electrical Engineering at the University of California, Berkeley.
Ivan Kaminow retired from Bell Labs in 1996 after a 42-year career. He conducted seminal studies on electrooptic modulators and materials, Raman scattering in ferroelectrics, integrated optics, semiconductor lasers (DBR , ridge-waveguide InGaAsP and multi-frequency), birefringent optical fibers, and WDM networks. Later, he led research on WDM components (EDFAs, AWGs and fiber Fabry-Perot Filters), and on WDM local and wide area networks. He is a member of the National Academy of Engineering and a recipient of the IEEE/OSA John Tyndall, OSA Charles Townes and IEEE/LEOS Quantum Electronics Awards. Since 2004, he has been Adjunct Professor of Electrical Engineering at the University of California, Berkeley.

Tingye Li retired from AT&T in 1998 after a 41-year career at Bell Labs and AT&T Labs. His seminal work on laser resonator modes is considered a classic. Since the late 1960s, he and his groups have conducted pioneering studies on lightwave technologies and systems. He led the work on amplified WDM transmission systems and championed their deployment for upgrading network capacity. He is a member of the National Academy of Engineering and a foreign member of the Chinese Academy of Engineering. He is a recipient of the IEEE David Sarnoff Award, IEEE/OSA John Tyndall Award, OSA Ives Medal/Quinn Endowment, AT&T Science and Technology Medal, and IEEE Photonics Award.