Advances in Knowledge Discovery and Data Mining: 9th Pacific-Asia Conference, PAKDD 2005, Hanoi, Vietnam, May 18-20, 2005, Proceedings

Front Cover
Springer Science & Business Media, May 10, 2005 - Computers - 864 pages
0 Reviews
The Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) is a leading international conference in the area of data mining and knowledge discovery. It provides an international forum for researchers and industry practitioners to share their new ideas, original research results and practical development experiences from all KDD-related areas including data mining, data warehousing, machine learning, databases, statistics, knowledge acquisition and automatic scientific discovery, data visualization, causality induction, and knowledge-based systems. This year’s conference (PAKDD 2005) was the ninth of the PAKDD series, and carried the tradition in providing high-quality technical programs to facilitate research in knowledge discovery and data mining. It was held in Hanoi, Vietnam at the Melia Hotel, 18–20 May 2005. We are pleased to provide some statistics about PAKDD 2005. This year we received 327 submissions (a 37% increase over PAKDD 2004), which is the highest number of submissions since the first PAKDD in 1997) from 28 countries/regions: Australia (33), Austria (1), Belgium (2), Canada (11), China (91), Switzerland (2), France (9), Finland (1), Germany (5), Hong Kong (11), Indonesia (1), India (2), Italy (2), Japan (21), Korea (51), Malaysia (1), Macau (1), New Zealand (3), Poland (4), Pakistan (1), Portugal (3), Singapore (12), Taiwan (19), Thailand (7), Tunisia (2), UK (5), USA (31), and Vietnam (9). The submitted papers went through a rigorous reviewing process. Each submission was reviewed by at least two reviewers, and most of them by three or four reviewers.

What people are saying - Write a review

We haven't found any reviews in the usual places.

Other editions - View all

About the author (2005)

Huan Liu is a professor of Computer Science and Engineering at Arizona State University. He obtained his Ph.D. in Computer Science at University of Southern California and B.Eng. in Computer Science and Electrical Engineering at Shanghai JiaoTong University. Before he joined ASU, he worked at Telecom Australia Research Labs and was on the faculty at National University of Singapore. He was recognized for excellence in teaching and research in Computer Science and Engineering at Arizona State University. His research interests are in data mining, machine learning, social computing, feature selection, and artificial intelligence, investigating problems that arise in many real-world, data-intensive applications with high-dimensional data of disparate forms such as social media. His well-cited publications include books, book chapters, encyclopedia entries as well as conference and journal papers. He is Editor in Chief of ACM Transaction on Intelligent Systems and Technology (TIST), serves on journal editorial boards and numerous conference program committees, and is a founding organizer of the International Conference Series on Social Computing, Behavioral-Cultural Modeling, and Prediction. He is an IEEE Fellow.