Turbulence: The Legacy of A. N. Kolmogorov

Front Cover
Cambridge University Press, Nov 30, 1995 - Science - 296 pages
This textbook presents a modern account of turbulence, one of the greatest challenges in physics. The state-of-the-art is put into historical perspective five centuries after the first studies of Leonardo and half a century after the first attempt by A.N. Kolmogorov to predict the properties of flow at very high Reynolds numbers. Such "fully developed turbulence" is ubiquitous in both cosmical and natural environments, in engineering applications and in everyday life. First, a qualitative introduction is given to bring out the need for a probabilistic description of what is in essence a deterministic system. Kolmogorov's 1941 theory is presented in a novel fashion with emphasis on symmetries (including scaling transformations) which are broken by the mechanisms producing the turbulence and restored by the chaotic character of the cascade to small scales. Considerable material is devoted to intermittency, the clumpiness of small-scale activity, which has led to the development of fractal and multifractal models. Such models, pioneered by B. Mandelbrot, have applications in numerous fields besides turbulence (diffusion limited aggregation, solid-earth geophysics, attractors of dynamical systems, etc). The final chapter contains an introduction to analytic theories of the sort pioneered by R. Kraichnan, to the modern theory of eddy transport and renormalization and to recent developments in the statistical theory of two-dimensional turbulence. The book concludes with a guide to further reading. The intended readership for the book ranges from first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, to professional scientists and engineers.
 

Contents

CHAPTER 1
13
4
21
CHAPTER 3
27
Two experimental laws of fully developed turbulence
57
CHAPTER 6
73
Phenomenology of turbulence in the sense of Kolmogorov 1941
100
Intermittency
120
97
167
40
189
CHAPTER 9
195
45
227
References
255
Author index
283
Subject index
289
Copyright

Other editions - View all

Common terms and phrases

Popular passages

Page 258 - Transition to chaos in a shell model of turbulence, Physica D 80, 105-119.
Page 258 - Brachet, ME, Meiron, DI, Orszag, SA, Nickel, BG, Morf, RH & Frisch, U. 1983. Small-scale structure of the Taylor-Green vortex, J. Fluid Mech. 130, 411-451 Brachet, ME, Meneguzzi, M., Politano, H.
Page 259 - Tabeling, P. 1994. Quantitative experimental study of the free decay of quasi-two-dimensional turbulence, Phys. Rev. E 49, 454^61.
Page 256 - Aurell, E., Frisch, U., Lutsko, J. & Vergassola, M. 1992. On the multifractal properties of the energy dissipation derived from turbulence data, /. Fluid Mech.
Page 259 - Mathematical examples illustrating relations occuring in the theory of turbulent fluid motion.

Bibliographic information