GPU Computing Gems Jade Edition

Front Cover
Elsevier, Nov 2, 2011 - Computers - 560 pages

GPU Computing Gems, Jade Edition, offers hands-on, proven techniques for general purpose GPU programming based on the successful application experiences of leading researchers and developers. One of few resources available that distills the best practices of the community of CUDA programmers, this second edition contains 100% new material of interest across industry, including finance, medicine, imaging, engineering, gaming, environmental science, and green computing. It covers new tools and frameworks for productive GPU computing application development and provides immediate benefit to researchers developing improved programming environments for GPUs.

Divided into five sections, this book explains how GPU execution is achieved with algorithm implementation techniques and approaches to data structure layout. More specifically, it considers three general requirements: high level of parallelism, coherent memory access by threads within warps, and coherent control flow within warps. Chapters explore topics such as accelerating database searches; how to leverage the Fermi GPU architecture to further accelerate prefix operations; and GPU implementation of hash tables. There are also discussions on the state of GPU computing in interactive physics and artificial intelligence; programming tools and techniques for GPU computing; and the edge and node parallelism approach for computing graph centrality metrics. In addition, the book proposes an alternative approach that balances computation regardless of node degree variance.

Software engineers, programmers, hardware engineers, and advanced students will find this book extremely usefull. For useful source codes discussed throughout the book, the editors invite readers to the following website: ..."

  • This second volume of GPU Computing Gems offers 100% new material of interest across industry, including finance, medicine, imaging, engineering, gaming, environmental science, green computing, and more
  • Covers new tools and frameworks for productive GPU computing application development and offers immediate benefit to researchers developing improved programming environments for GPUs
  • Even more hands-on, proven techniques demonstrating how general purpose GPU computing is changing scientific research
  • Distills the best practices of the community of CUDA programmers; each chapter provides insights and ideas as well as 'hands on' skills applicable to a variety of fields
 

Contents

Parallel Algorithms and Data Structures
1
Numerical Algorithms
97
Engineering Simulation
155
Interactive Physics and AI for Games and Engineering Simulation
267
Computational Finance
307
Programming Tools and Techniques
355
Index
519
Copyright

Other editions - View all

Common terms and phrases

About the author (2011)

Wen-mei W. Hwu is a Professor and holds the Sanders-AMD Endowed Chair in the Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign. His research interests are in the area of architecture, implementation, compilation, and algorithms for parallel computing. He is the chief scientist of Parallel Computing Institute and director of the IMPACT research group (www.impact.crhc.illinois.edu). He is a co-founder and CTO of MulticoreWare. For his contributions in research and teaching, he received the ACM SigArch Maurice Wilkes Award, the ACM Grace Murray Hopper Award, the Tau Beta Pi Daniel C. Drucker Eminent Faculty Award, the ISCA Influential Paper Award, the IEEE Computer Society B. R. Rau Award and the Distinguished Alumni Award in Computer Science of the University of California, Berkeley. He is a fellow of IEEE and ACM. He directs the UIUC CUDA Center of Excellence and serves as one of the principal investigators of the NSF Blue Waters Petascale computer project. Dr. Hwu received his Ph.D. degree in Computer Science from the University of California, Berkeley.

Bibliographic information