Guide to Essential Math: A Review for Physics, Chemistry and Engineering Students

Front Cover
Elsevier Science, Feb 15, 2013 - Mathematics - 320 pages
This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly) that is needed to succeed in science courses. The focus is on math actually used in physics, chemistry, and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student's ability to think in mathematical terms and to apply quantitative methods to scientific problems. Detailed illustrations and links to reference material online help further comprehension. The second edition features new problems and illustrations and features expanded chapters on matrix algebra and differential equations.

  • Use of proven pedagogical techniques developed during the author's 40 years of teaching experience
  • New practice problems and exercises to enhance comprehension
  • Coverage of fairly advanced topics, including vector and matrix algebra, partial differential equations, special functions and complex variables

What people are saying - Write a review

We haven't found any reviews in the usual places.

Other editions - View all

About the author (2013)

Professor Blinder is Professor Emeritus of Chemistry and Physics at the University of Michigan, Ann Arbor and a senior scientist with Wolfram Research Inc., Champaign, IL.. After receiving his A.B. in Physics and Chemistry from Cornell University, he went on to receive an A. M in Physics, and a Ph. D. in Chemical Physics from Harvard University under Professors W. E. Moffitt and J. H. Van Vleck.
He has held positions at Johns Hopkins University, Carnegie-Mellon University, Harvard University, University College London, Centre de Méchanique Ondulatoire Appliquée in Paris, the Mathematical Institute in Oxford, and the University of Michigan.
Prof Blinder has won multiple awards for his work, published 4 books, and over 100 journal articles. His research interests include Theoretical Chemistry, Mathematical Physics, applications of quantum mechanics to atomic and molecular structure, theory and applications of Coulomb Propagators, structure and self-energy of the electron, supersymmetric quantum field theory, connections between general relativity and quantum mechanics.

Bibliographic information