Applications of Geometric Algebra in Computer Science and Engineering

Front Cover
Springer Science & Business Media, Mar 8, 2002 - Computers - 478 pages
0 Reviews

Geometric algebra has established itself as a powerful and valuable mathematical tool for solving problems in computer science, engineering, physics, and mathematics. The articles in this volume, written by experts in various fields, reflect an interdisciplinary approach to the subject, and highlight a range of techniques and applications. Relevant ideas are introduced in a self-contained manner and only a knowledge of linear algebra and calculus is assumed.

Features and Topics:

* The mathematical foundations of geometric algebra are explored

* Applications in computational geometry include models of reflection and ray-tracing and a new and concise characterization of the crystallographic groups

* Applications in engineering include robotics, image geometry, control-pose estimation, inverse kinematics and dynamics, control and visual navigation

* Applications in physics include rigid-body dynamics, elasticity, and electromagnetism

* Chapters dedicated to quantum information theory dealing with multi-particle entanglement, MRI, and relativistic generalizations

Practitioners, professionals, and researchers working in computer science, engineering, physics, and mathematics will find a wide range of useful applications in this state-of-the-art survey and reference book. Additionally, advanced graduate students interested in geometric algebra will find the most current applications and methods discussed.

 

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

IV
3
VI
5
VII
10
VIII
17
IX
22
X
25
XI
27
XII
29
CLXXXII
255
CLXXXIV
256
CLXXXVIII
257
CLXXXIX
258
CXC
261
CXCII
262
CXCIII
264
CXCIV
265

XIII
32
XIV
35
XVI
36
XVII
37
XIX
38
XX
39
XXI
40
XXIV
41
XXV
42
XXVI
43
XXVII
44
XXVIII
45
XXIX
47
XXXI
48
XXXII
49
XXXIII
51
XXXV
52
XXXVI
53
XXXVII
54
XXXVIII
55
XXXIX
59
XLII
61
XLIII
62
XLV
63
XLVI
64
XLIX
65
LI
66
LIII
69
LIV
71
LV
72
LVI
74
LVII
79
LIX
81
LX
84
LXI
87
LXII
88
LXIII
89
LXIV
91
LXVII
93
LXVIII
95
LXIX
96
LXX
99
LXXIII
104
LXXIV
106
LXXV
109
LXXVII
112
LXXVIII
114
LXXIX
116
LXXX
119
LXXXIII
123
LXXXIV
127
LXXXV
129
LXXXVI
133
LXXXVIII
134
LXXXIX
135
XCI
136
XCII
137
XCIV
138
XCV
139
XCVI
141
XCVII
142
XCVIII
145
C
146
CI
147
CII
149
CIII
150
CIV
153
CV
157
CVII
158
CVIII
159
CIX
160
CXII
161
CXIII
163
CXV
164
CXVI
165
CXVII
166
CXVIII
169
CXX
170
CXXI
172
CXXII
173
CXXIV
175
CXXV
178
CXXVI
179
CXXVIII
181
CXXIX
183
CXXX
184
CXXXI
187
CXXXIV
189
CXXXV
193
CXXXVI
195
CXXXVII
197
CXXXIX
199
CXL
202
CXLI
206
CXLII
208
CXLIII
209
CXLIV
210
CXLV
213
CXLVII
214
CXLIX
215
CL
216
CLI
217
CLIII
219
CLIV
222
CLV
223
CLVI
224
CLVII
227
CLIX
229
CLX
230
CLXI
233
CLXII
234
CLXIII
237
CLXV
238
CLXVI
239
CLXVII
240
CLXVIII
242
CLXIX
244
CLXX
249
CLXXII
250
CLXXIII
251
CLXXIV
252
CLXXVI
253
CLXXXI
254
CXCV
268
CXCVI
271
CXCIX
272
CC
273
CCI
274
CCII
276
CCIV
277
CCVI
279
CCVII
280
CCVIII
285
CCX
287
CCXI
288
CCXII
291
CCXIII
292
CCXIV
297
CCXVI
298
CCXVII
300
CCXVIII
301
CCXIX
303
CCXX
305
CCXXI
307
CCXXIV
308
CCXXV
309
CCXXVI
310
CCXXVII
311
CCXXVIII
312
CCXXIX
313
CCXXX
317
CCXXXI
319
CCXXXIII
320
CCXXXIV
321
CCXXXV
322
CCXXXVI
324
CCXXXVIII
325
CCXXXIX
326
CCXL
327
CCXLI
329
CCXLIII
333
CCXLV
334
CCXLVI
335
CCXLVII
336
CCXLVIII
339
CCXLIX
341
CCLI
342
CCLII
346
CCLIII
347
CCLIV
349
CCLV
351
CCLVII
352
CCLVIII
356
CCLIX
361
CCLXI
362
CCLXII
364
CCLXIII
365
CCLXIV
366
CCLXV
367
CCLXVII
370
CCLXVIII
371
CCLXIX
373
CCLXXI
374
CCLXXIII
375
CCLXXIV
376
CCLXXV
377
CCLXXVII
378
CCLXXVIII
379
CCLXXIX
381
CCLXXX
385
CCLXXXIII
387
CCLXXXV
388
CCLXXXVI
389
CCLXXXVIII
391
CCLXXXIX
392
CCXCI
395
CCXCIII
396
CCXCV
397
CCXCVII
398
CCXCVIII
399
CCXCIX
401
CCC
402
CCCI
403
CCCII
405
CCCIII
407
CCCIV
408
CCCV
409
CCCVIII
410
CCCIX
411
CCCX
413
CCCXI
415
CCCXII
416
CCCXIII
418
CCCXIV
419
CCCXV
420
CCCXVI
423
CCCXVII
425
CCCXVIII
427
CCCXIX
429
CCCXX
437
CCCXXII
440
CCCXXIII
442
CCCXXIV
443
CCCXXV
444
CCCXXVI
446
CCCXXVII
449
CCCXXIX
450
CCCXXX
451
CCCXXXII
453
CCCXXXIII
454
CCCXXXIV
455
CCCXXXVI
456
CCCXXXVIII
458
CCCXL
459
CCCXLII
460
CCCXLIII
461
CCCXLIV
462
CCCXLVI
463
CCCXLVII
464
CCCXLVIII
469
CCCLI
471
CCCLII
473
CCCLIII
474
CCCLIV
475
Copyright

Common terms and phrases

References to this book

All Book Search results »

About the author (2002)

Chris Doran obtained his Ph.D. from the University of Cambridge, having gained a distinction in Part II of his undergraduate degree. He was elected a Junior Research Fellow of Churchill College, Cambridge in 1993, was made a Lloyd's of London Fellow in 1996 and was the Schlumberger Interdisciplinary Research Fellow of Darwin College, Cambridge in 1997 and 2000. He is currently a Fellow of Sidney Sussex College, Cambridge and holds an EPSRC Advanced Fellowship. Dr Doran has published widely on aspects of mathematical physics and is currently researching applications of geometric algebra in engineering and computer science.

Bibliographic information