# BOWDICH'S USEFUL TABLES. FOURTH EDITION

1863

### What people are saying -Write a review

We haven't found any reviews in the usual places.

### Contents

 Section 1 9 Section 2 11 Section 3 25 Section 4 28 Section 5 35 Section 6 36 Section 7 37 Section 8 39
 Section 10 70 Section 11 130 Section 12 170 Section 13 186 Section 14 187 Section 15 210 Section 16 230 Section 17 232

 Section 9 56
 Section 18 240

### Popular passages

Page 232 - XXVI. are given the logarithms of all numbers from 1 to 9999; to each one must be prefixed an index, with a period or dot to separate it from the other part, as in decimal fractions ; the numbers from 1 to 100 are published in that table with their indices ; but from 100 to 9999 the index is left out for the sake of brevity ; but it may be supplied by this general rule, viz. The index of the logarithm of any integer or mixed number is always one less than the number of integral places in the natural...
Page 131 - For turning Degrees and Minutes into Time, and the contrary. D. HM D. HM D. HM D. HM D. HM D. HM M. MS M.
Page 236 - BY LOGARITHMS. RULE. Divide the logarithm of the number by the index of the power ; the quotient will be the logarithm of the rOOt sought.
Page 236 - Second Method, Having stated the terms of the proportion according to the proper rule or theorem, resolve it like any other proportion, in which a fourth term is to be found from three given terms, by multiplying the second and third together, and dividing the product by the first, in working with the natural numbers ; or, in working with the logarithms, add the logs, of the second and third terms together, and from the sum take the log.
Page 236 - Bat if the power whose rOOt is to be extracted is a decimal fraction less than unity, prefix to the index of its logarithm a figure less by one than the index of the power,* and divide the whole by the index of the power ; the quotient will be the logarithm of the rOOt sought. EXAMPLE I.
Page 237 - To obtain the degrees, minutes, and seconds corresponding to any given log. sine, cosine, &c. we find the two nearest numbers to the given log. sine, cosine, &c., in the column marked sine, cosine...
Page 28 - Difference of Latitude and Departure for 12 Degrees. Dist. Lat. Dep. Dist, Lat. Dep. Dist.
Page 33 - Dist. Dep. Lat. Dist. Dep. Lat. Dist. Dep. Lat. Dist. Dep. Lat, Dist, Dep. Lat. Difference of Latitude and Departure for 17 Degrees. Dist. Lat, Dep. Dist.
Page 237 - ... the minutes being found in the column marked M, which stands on the side of the page on which the degrees are marked. Thus, if the degrees are less than 45, the minutes are to be found in the left hand column...
Page 49 - Degrees. Dist. Lat. Dep. Dist. Lat. Dep. Dist. Lat. Dep. Dist. Lat.