A Short History of Nearly Everything

Front Cover
Doubleday Canada, 2004 - Book clubs (Discussion groups) - 560 pages
9 Reviews
One of the world's most beloved and bestselling writers takes his ultimate journey -- into the most intriguing and intractable questions that science seeks to answer.

In A Walk in the Woods, Bill Bryson trekked the Appalachian Trail -- well, most of it. In In A Sunburned Country, he confronted some of the most lethal wildlife Australia has to offer. Now, in his biggest book, he confronts his greatest challenge: to understand -- and, if possible, answer -- the oldest, biggest questions we have posed about the universe and ourselves. Taking as territory everything from the Big Bang to the rise of civilization, Bryson seeks to understand how we got from there being nothing at all to there being us. To that end, he has attached himself to a host of the world's most advanced (and often obsessed) archaeologists, anthropologists, and mathematicians, travelling to their offices, laboratories, and field camps. He has read (or tried to read) their books, pestered them with questions, apprenticed himself to their powerful minds. A Short History of Nearly Everything is the record of this quest, and it is a sometimes profound, sometimes funny, and always supremely clear and entertaining adventure in the realms of human knowledge, as only Bill Bryson can render it. Science has never been more involving or entertaining.


From the Hardcover edition.

What people are saying - Write a review

User ratings

5 stars
4
4 stars
5
3 stars
0
2 stars
0
1 star
0

User Review - Flag as inappropriate

A Short History of Nearly Everything was a great book. I picked it for a school project, thinking it would be the easiest to get through. Turns out it was easier than I thought to get through, I picked it up and by the time I had put it down I was half-way through. The book was great and very informative; it had just the right amount of history and information. Although the book was supposed to be a history it felt more like a story of how the earth was made by the views of scientists. I was worried that the book would have to many scientific terms and that it would not explain them so I would not really understand what exactly the book was talking about. I was pleasantly surprised that I understood almost everything that Bill Bryson was talking about. The good thing about the book was that as it was explaining an idea and as soon as you start to wonder something it starts to answer your question. While the book cannot answer everything you wonder it comes pretty close to those questions that you have always had. A Short History of Nearly Everything gives you informative facts about how scientist believe the earth came to be and how things work, without actually pushing any ideas onto you, it is simply an informative book. Overall a great book and great for anyone who wants answers to those tough questions you have always wondered. 

User Review - Flag as inappropriate

I think this will be the book that I will go back to again and again. There were so many interesting facts to learn, and I enjoyed reading about how various scientists discovered new information that often surprised them. I liked reading about William Herschel's discovery of the planet Uranus in 1781 and how he wanted to name it after King George III (Georgium Sidus). I also liked learning about prehistoric guinea pigs the size of cows. 

Other editions - View all

About the author (2004)

1: HOW TO BUILD A UNIVERSE

No matter how hard you try you will never be able to grasp just how tiny, how spatially unassuming, is a proton. It is just way too small.

A proton is an infinitesimal part of an atom, which is itself of course an insubstantial thing. Protons are so small that a little dib of ink like the dot on this i can hold something in the region of 500,000,000,000 of them, rather more than the number of seconds contained in half a million years. So protons are exceedingly microscopic, to say the very least.

Now imagine if you can (and of course you can''t) shrinking one of those protons down to a billionth of its normal size into a space so small that it would make a proton look enormous. Now pack into that tiny, tiny space about an ounce of matter. Excellent. You are ready to start a universe.

I''m assuming of course that you wish to build an inflationary universe. If you''d prefer instead to build a more old-fashioned, standard Big Bang universe, you''ll need additional materials. In fact, you will need to gather up everything there is -- every last mote and particle of matter between here and the edge of creation -- and squeeze it into a spot so infinitesimally compact that it has no dimensions at all. It is known as a singularity.

In either case, get ready for a really big bang. Naturally, you will wish to retire to a safe place to observe the spectacle. Unfortunately, there is nowhere to retire to because outside the singularity there is no where. When the universe begins to expand, it won''t be spreading out to fill a larger emptiness. The only space that exists is the space it creates as it goes.

It is natural but wrong to visualize the singularity as a kind of pregnant dot hanging in a dark, boundless void. But there is no space, no darkness. The singularity has no "around" around it. There is no space for it to occupy, no place for it to be. We can''t even ask how long it has been there -- whether it has just lately popped into being, like a good idea, or whether it has been there forever, quietly awaiting the right moment. Time doesn''t exist. There is no past for it to emerge from.

And so, from nothing, our universe begins.

In a single blinding pulse, a moment of glory much too swift and expansive for any form of words, the singularity assumes heavenly dimensions, space beyond conception. In the first lively second (a second that many cosmologists will devote careers to shaving into ever-finer wafers) is produced gravity and the other forces that govern physics. In less than a minute the universe is a million billion miles across and growing fast. There is a lot of heat now, ten billion degrees of it, enough to begin the nuclear reactions that create the lighter elements -- principally hydrogen and helium, with a dash (about one atom in a hundred million) of lithium. In three minutes, 98 percent of all the matter there is or will ever be has been produced. We have a universe. It is a place of the most wondrous and gratifying possibility, and beautiful, too. And it was all done in about the time it takes to make a sandwich.

When this moment happened is a matter of some debate. Cosmologists have long argued over whether the moment of creation was 10 billion years ago or twice that or something in between. The consensus seems to be heading for a figure of about 13.7 billion years, but these things are notoriously difficult to measure, as we shall see further on. All that can really be said is that at some indeterminate point in the very distant past, for reasons unknown, there came the moment known to science as t = 0. We were on our way.

There is of course a great deal we don''t know, and much of what we think we know we haven''t known, or thought we''ve known, for long. Even the notion of the Big Bang is quite a recent one. The idea had been kicking around since the 1920s, when Georges Lem tre, a Belgian priest-scholar, first tentatively proposed it, but it didn''t really become an active notion in cosmology until the mid-1960s when two young radio astronomers made an extraordinary and inadvertent discovery.

Their names were Arno Penzias and Robert Wilson. In 1965, they were trying to make use of a large communications antenna owned by Bell Laboratories at Holmdel, New Jersey, but they were troubled by a persistent background noise -- a steady, steamy hiss that made any experimental work impossible. The noise was unrelenting and unfocused. It came from every point in the sky, day and night, through every season. For a year the young astronomers did everything they could think of to track down and eliminate the noise. They tested every electrical system. They rebuilt instruments, checked circuits, wiggled wires, dusted plugs. They climbed into the dish and placed duct tape over every seam and rivet. They climbed back into the dish with brooms and scrubbing brushes and carefully swept it clean of what they referred to in a later paper as "white dielectric material," or what is known more commonly as bird shit. Nothing they tried worked.

Unknown to them, just thirty miles away at Princeton University, a team of scientists led by Robert Dicke was working on how to find the very thing they were trying so diligently to get rid of. The Princeton researchers were pursuing an idea that had been suggested in the 1940s by the Russian-born astrophysicist George Gamow that if you looked deep enough into space you should find some cosmic background radiation left over from the Big Bang. Gamow calculated that by the time it crossed the vastness of the cosmos, the radiation would reach Earth in the form of microwaves. In a more recent paper he had even suggested an instrument that might do the job: the Bell antenna at Holmdel. Unfortunately, neither Penzias and Wilson, nor any of the Princeton team, had read Gamow''s paper.

The noise that Penzias and Wilson were hearing was, of course, the noise that Gamow had postulated. They had found the edge of the universe, or at least the visible part of it, 90 billion trillion miles away. They were "seeing" the first photons -- the most ancient light in the universe -- though time and distance had converted them to microwaves, just as Gamow had predicted. In his book The Inflationary Universe, Alan Guth provides an analogy that helps to put this finding in perspective. If you think of peering into the depths of the universe as like looking down from the hundredth floor of the Empire State Building (with the hundredth floor representing now and street level representing the moment of the Big Bang), at the time of Wilson and Penzias''s discovery the most distant galaxies anyone had ever detected were on about the sixtieth floor, and the most distant things -- quasars -- were on about the twentieth. Penzias and Wilson''s finding pushed our acquaintance with the visible universe to within half an inch of the sidewalk.

Still unaware of what caused the noise, Wilson and Penzias phoned Dicke at Princeton and described their problem to him in the hope that he might suggest a solution. Dicke realized at once what the two young men had found. "Well, boys, we''ve just been scooped," he told his colleagues as he hung up the phone.

Soon afterward the Astrophysical Journal published two articles: one by Penzias and Wilson describing their experience with the hiss, the other by Dicke''s team explaining its nature. Although Penzias and Wilson had not been looking for cosmic background radiation, didn''t know what it was when they had found it, and hadn''t described or interpreted its character in any paper, they received the 1978 Nobel Prize in physics. The Princeton researchers got only sympathy. According to Dennis Overbye in Lonely Hearts of the Cosmos, neither Penzias nor Wilson altogether understood the significance of what they had found until they read about it in the New York Times.

Incidentally, disturbance from cosmic background radiation is something we have all experienced. Tune your television to any channel it doesn''t receive, and about 1 percent of the dancing static you see is accounted for by this ancient remnant of the Big Bang. The next time you complain that there is nothing on, remember that you can always watch the birth of the universe.

Although everyone calls it the Big Bang, many books caution us not to think of it as an explosion in the conventional sense. It was, rather, a vast, sudden expansion on a whopping scale. So what caused it?

One notion is that perhaps the singularity was the relic of an earlier, collapsed universe -- that we''re just one of an eternal cycle of expanding and collapsing universes, like the bladder on an oxygen machine. Others attribute the Big Bang to what they call "a false vacuum" or "a scalar field" or "vacuum energy" -- some quality or thing, at any rate, that introduced a measure of instability into the nothingness that was. It seems impossible that you could get something from nothing, but the fact that once there was nothing and now there is a universe is evident proof that you can. It may be that our universe is merely part of many larger universes, some in different dimensions, and that Big Bangs are going on all the time all over the place. Or it may be that space and time had some other forms altogether before the Big Bang -- forms too alien for us to imagine -- and that the Big Bang represents some sort of transition phase, where the universe went from a form we can''t understand to one we almost can. "These are very close to religious questions," Dr. Andrei Linde, a cosmologist at Stanford, told the New York Times in 2001.

The Big Bang theory isn''t about the bang itself but about what happened after the bang. Not long after, mind you. By doing a lot of math a

Bibliographic information