Modeling Biological Systems:: Principles and ApplicationsI Principles 1 1 Models of Systems 3 1. 1 Systems. Models. and Modeling . . . . . . . . . . . . . . . . . . . . 3 1. 2 Uses of Scientific Models . . . . . . . . . . . . . . . . . . . . . . . . 4 1. 3 Example: Island Biogeography . . . . . . . . . . . . . . . . . . . . . 6 1. 4 Classifications of Models . . . . . . . . . . . . . . . . . . . . . . . . 10 1. 5 Constraints on Model Structure . . . . . . . . . . . . . . . . . . . . . 12 1. 6 Some Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1. 7 Misuses of Models: The Dark Side . . . . . . . . . . . . . . . . . . . 13 1. 8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 The Modeling Process 17 2. 1 Models Are Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2. 2 Two Alternative Approaches . . . . . . . . . . . . . . . . . . . . . . 18 2. 3 An Example: Population Doubling Time . . . . . . . . . . . . . . . . 24 2. 4 Model Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2. 5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 Qualitative Model Formulation 32 3. 1 How to Eat an Elephant . . . . . . . . . . . . . . . . . . . . . . . . . 32 3. 2 Forrester Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3. 3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3. 4 Errors in Forrester Diagrams . . . . . . . . . . . . . . . . . . . . . . 44 3. 5 Advantages and Disadvantages of Forrester Diagrams . . . . . . . . . 44 3. 6 Principles of Qualitative Formulation . . . . . . . . . . . . . . . . . . 45 3. 7 Model Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3. 8 Other Modeling Problems . . . . . . . . . . . . . . . . . . . . . . . . 49 viii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. 9 Exercises 53 4 Quantitative Model Formulation: I 4. 1 From Qualitative to Quantitative . . . . . . . . . . . . . . . . . Finite Difference Equations and Differential Equations 4. 2 . . . . . . . . . . . . . . . . 4. 3 Biological Feedback in Quantitative Models . . . . . . . . . . . . . . . . . . . . . . . . . . 4. 4 Example Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. 5 Exercises 5 Quantitative Model Formulation: I1 81 . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 1 Physical Processes 81 . . . . . . . . . . . . . . . 5. 2 Using the Toolbox of Biological Processes 89 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 3 Useful Functions 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 4 Examples 102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 5 Exercises 104 6 Numerical Techniques 107 . . . . . . . . . . . . . . . . . . . . . . . 6. 1 Mistakes Computers Make 107 . . . . . . . . . . . . . . . . . . . . . . . . . . 6. 2 Numerical Integration 110 . . . . . . . . . . . . . . . . 6. 3 Numerical Instability and Stiff Equations 115 . . . . . . . . . . . . . . |
What people are saying - Write a review
We haven't found any reviews in the usual places.
Contents
LXXIII | 225 |
LXXIV | 228 |
LXXV | 231 |
LXXVI | 235 |
LXXVII | 237 |
LXXX | 242 |
LXXXI | 250 |
LXXXII | 259 |
| 18 | |
| 24 | |
| 28 | |
| 30 | |
| 32 | |
| 33 | |
| 36 | |
| 44 | |
| 45 | |
| 47 | |
| 49 | |
| 53 | |
| 58 | |
| 59 | |
| 63 | |
| 79 | |
| 81 | |
XXXVI | 89 |
XXXVII | 96 |
XXXVIII | 102 |
XXXIX | 104 |
XL | 107 |
XLIII | 110 |
XLIV | 115 |
XLV | 117 |
XLVI | 118 |
XLVII | 121 |
XLVIII | 123 |
L | 125 |
LI | 128 |
LII | 130 |
LIII | 138 |
LIV | 139 |
LV | 140 |
LVI | 141 |
LVII | 144 |
LXI | 151 |
LXII | 164 |
LXIII | 174 |
LXIV | 175 |
LXV | 176 |
LXVI | 178 |
LXVII | 192 |
LXVIII | 210 |
LXIX | 213 |
LXX | 215 |
LXXI | 217 |
LXXII | 223 |
LXXXIII | 260 |
LXXXV | 262 |
LXXXVI | 268 |
LXXXVIII | 272 |
LXXXIX | 276 |
XC | 281 |
XCI | 292 |
XCII | 295 |
XCIII | 299 |
XCIV | 302 |
XCV | 304 |
XCVI | 307 |
XCVII | 309 |
XCVIII | 314 |
XCIX | 318 |
C | 321 |
CI | 322 |
CII | 324 |
CIII | 325 |
CIV | 333 |
CV | 339 |
CVI | 342 |
CVII | 350 |
CVIII | 354 |
CIX | 356 |
CX | 367 |
CXI | 369 |
CXII | 370 |
CXIII | 371 |
CXIV | 373 |
CXV | 374 |
CXVI | 386 |
CXVII | 388 |
CXVIII | 390 |
CXIX | 391 |
CXX | 392 |
CXXI | 394 |
CXXII | 406 |
CXXIII | 412 |
CXXIV | 413 |
CXXV | 415 |
CXXVI | 416 |
CXXVIII | 421 |
CXXIX | 426 |
CXXX | 433 |
CXXXII | 435 |
CXXXIII | 463 |
Other editions - View all
Modeling Biological Systems:: Principles and Applications James W. Haefner No preview available - 2014 |
Common terms and phrases
analysis applied approach approximation assume basic biological calculated cell Chapter compartment complex components concentration constant contains continuous curve decreases defined depends derivative describe determine deviation differential equations discuss distribution dynamics effects equations equilibrium error estimate example experiments Figure flow Forrester diagram function given glucose growth hypotheses illustrates important increases independent individuals initial interest levels limit linear mathematical maximum mean measure method negative nullclines objects observations occur organisms output parameters particular physical plant population positive possible predator predictions prey probability problem processes produce quantity question random relation relative represent require response sample scale shown shows similar simple simulation single solution solve space spatial species stable statistical step structure Table temperature tion units validation values variables
Popular passages
Page 169 - with degrees of freedom equal to the difference in the number of parameters between the two models:
Page 3 - I want to understand everything,' said Miro. ‘I want to know everything and put it all together to see what it means.' ‘Excellent project,' she said. ‘It will look very good on your
Page 125 - function (y = mx + b), where m is the slope and b is the intercept.
Page 45 - The first rule of discovery is to have brains and good luck. The second rule of discovery is to sit tight and wait
Page 73 - The Law of Mass Action states that the rate of a reaction is proportional to
Page 134 - acceleration is the derivative of velocity with respect to time, or the second derivative of position with respect to time.
Page 96 - y is the dependent variable and x is the independent variable. The
Page 57 - of typhus and sylvatic plague, which it had itself created, was obliged to parachute fourteen thousand live cats into Borneo. Thus occurred Operation Cat Drop, one of the odder missions of the British Royal Air Force.
Page 57 - Dayak villagers had malaria, and the World Health Organization had a solution that was simple and direct. Spraying DDT seemed to work.¿ mosquitoes died, and malaria declined. But then an expanding web of side effects
Page 57 - being eaten by geckoes, which were eaten by cats. The DDT invisibly built up in the food chain and began to kill the cats. Without the cats, the rats


