Principles of Neural Design

Front Cover
MIT Press, May 22, 2015 - Science - 542 pages

Neuroscience research has exploded, with more than fifty thousand neuroscientists applying increasingly advanced methods. A mountain of new facts and mechanisms has emerged. And yet a principled framework to organize this knowledge has been missing. In this book, Peter Sterling and Simon Laughlin, two leading neuroscientists, strive to fill this gap, outlining a set of organizing principles to explain the whys of neural design that allow the brain to compute so efficiently.

Setting out to "reverse engineer" the brain -- disassembling it to understand it -- Sterling and Laughlin first consider why an animal should need a brain, tracing computational abilities from bacterium to protozoan to worm. They examine bigger brains and the advantages of "anticipatory regulation"; identify constraints on neural design and the need to "nanofy"; and demonstrate the routes to efficiency in an integrated molecular system, phototransduction. They show that the principles of neural design at finer scales and lower levels apply at larger scales and higher levels; describe neural wiring efficiency; and discuss learning as a principle of biological design that includes "save only what is needed."

Sterling and Laughlin avoid speculation about how the brain might work and endeavor to make sense of what is already known. Their distinctive contribution is to gather a coherent set of basic rules and exemplify them across spatial and functional scales.

 

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

1 What Engineers Know about Design
1
2 Why an Animal Needs a Brain
11
3 Why a Bigger Brain?
41
4 How Bigger Brains Are Organized
57
From Molecules to Molecular Circuits
105
6 Information Processing in Protein Circuits
125
7 Design of Neurons
155
8 How Photoreceptors Optimize the Capture of Visual Information
195
11 Principles of Retinal Design
277
Pathways to Perception and Action
323
13 Principles of Efficient Wiring
363
14 Learning as DesignDesign of Learning
399
15 Summary and Conclusions
433
Principles of Neural Design
445
Notes
447
References
465

An Efficient Interface for HighSpeed Vision
235
Recoding Analogue Signals to Pulsatile
265

Other editions - View all

Common terms and phrases

About the author (2015)

Peter Sterling is Professor of Neuroscience at the University of Pennsylvania School of Medicine. Simon Laughlin is Professor of Neurobiology in the Department of Zoology at the University of Cambridge and a Fellow of the Royal Society.

Bibliographic information