## An Introduction to Differentiable Manifolds and Riemannian GeometryAn Introduction to Differentiable Manifolds and Riemannian Geometry |

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Contents

1 | |

20 | |

Chapter III Differentiable Manifolds and Submanifolds | 51 |

Chapter IV Vector Fields on a Manifold | 106 |

Chapter V Tensors and Tensor Fields on Manifolds | 176 |

Chapter VI Integration on Manifolds | 229 |

Chapter VII Differentiation on Riemannian Manifolds | 297 |

Chapter VIII Curvature | 365 |

417 | |

423 | |

### Other editions - View all

### Common terms and phrases

algebra basis bi-invariant C*-vector field compact completes the proof components connected coordinate frames coordinate neighborhood Corollary corresponding countable covariant tensor covering curve p(t defined definition denote derivative diffeomorphism differentiable manifold dimension domain of integration element equations equivalent Euclidean space example Exercise exists fact finite fixed point formula functions geodesic geometry given Gl(n hence homeomorphism homotopy identity imbedding inner product integral curve isometry isomorphism Lemma Let F Lie group G linear map mapping F matrix notation obtain one-parameter subgroup one-to-one open set open subset oriented orthogonal orthonormal parameter plane properly discontinuously properties prove rank real numbers regular submanifold Remark Riemannian manifold Riemannian metric Section Show structure submanifold subspace suppose surface symmetric tangent space tangent vector tensor field Theorem Let topology uniquely determined vector field vector space zero