Missing Data, Issue 136

Front Cover
SAGE Publications, 2002 - Mathematics - 93 pages
0 Reviews

Using numerous examples and practical tips, this book offers a nontechnical explanation of the standard methods for missing data (such as listwise or casewise deletion) as well as two newer (and, better) methods, maximum likelihood and multiple imputation. Anyone who has relied on ad-hoc methods that are statistically inefficient or biased will find this book a welcome and accessible solution to their problems with handling missing data. 

 

What people are saying - Write a review

We haven't found any reviews in the usual places.

Other editions - View all

References to this book

All Book Search results »

About the author (2002)

Paul D. Allison, Ph.D., is Professor of Sociology at the University of Pennsylvania where he teaches graduate courses in methods and statistics. He is also the founder and president of Statistical Horizons LLC which offers short courses on a wide variety of statistical topics.

After completing his doctorate in sociology at the University of Wisconsin, he did postdoctoral study in statistics at the University of Chicago and the University of Pennsylvania. He has published eight books and more than 60 articles on topics that include linear regression, log-linear analysis, logistic regression, structural equation models, inequality measures, missing data, and survival analysis.

Much of his early research focused on career patterns of academic scientists. At present, his principal research is on methods for analyzing longitudinal data, especially those for determining the causes and consequences of events, and on methods for handling missing data.

A former Guggenheim Fellow, Allison received the 2001 Lazarsfeld Award for distinguished contributions to sociological methodology. In 2010 he was named a Fellow of the American Statistical Association. He is also a two-time winner of the American Statistical Association’s award for “Excellence in Continuing Education.”