## Finite-dimensional modules for the quantum affine algebra Uq(g) and its borel subalgebraLet n be the number of simple roots of g and choose &egr; ∈ {-1,1}n. We prove the following: (1) Let V be a finite-dimensional irreducible Uq( g )≥0-module of type &egr;. Then the action of Uq( g )≥0 on V extends uniquely to an action of Uq( g ) on V. The resulting Uq( g )-module structure on V is irreducible and of type &egr;. (2) Let V be a finite-dimensional irreducible Uq( g )-module of type &egr;. When the Uq( g )-action is restricted to Uq( g )≥0 the resulting Uq( g )≥0-module structure on V is irreducible and of type &egr;. |

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Common terms and phrases

action affine algebra Uq(g affine Kac-Moody algebra affine type basis consisting Benkart and Terwilliger Borel subalgebra Cartan matrix choose consisting of weight define Definition 3.7 dimensional irreducible modules direct sum dissertation eigenspaces eigenvalues equitable presentation extends uniquely fcf1 acts finite finite-dimensional irreducible g)-module finite-dimensional irreducible modules finite-dimensional irreducible t/,(g)-module finite-dimensional irreducible U-°-module finite-dimensional irreducible Uq(g)-module following hold following relations integers invariant under U>0 irreducible t/-°-module l2)-module structure Lemma Let g Lie algebra linear transformations Zi module structure modules for Uq(g nonzero and invariant notation of Definition Note positive integer Proposition 2.27 quantum affine algebra quantum group result follows root of unity set of weights span(v3 structure is irreducible suffices to show Suppose t/,(g)-module of type Theorem 3.2 tridiagonal pairs U-°-module of type Ui(a Ui(s unital associative F-algebra universal enveloping algebra Uq(g)-module with set vector of type vector space weight spaces weight vector Weyl group Wi(s