Elegant Chaos: Algebraically Simple Chaotic Flows

Front Cover
World Scientific, 2010 - Mathematics - 304 pages
0 Reviews
1. Fundamentals. 1.1. Dynamical systems. 1.2. State space. 1.3. Dissipation. 1.4. Limit cycles. 1.5. Chaos and strange attractors. 1.6. Poincaré sections and fractals. 1.7. Conservative chaos. 1.8. Two-toruses and quasiperiodicity. 1.9. Largest Lyapunov exponent. 1.10. Lyapunov exponent spectrum. 1.11. Attractor dimension. 1.12. Chaotic transients. 1.13. Intermittency. 1.14. Basins of attraction. 1.15. Numerical methods. 1.16. Elegance -- 2. Periodically forced systems. 2.1. Van der Pol oscillator. 2.2. Rayleigh oscillator. 2.3. Rayleigh oscillator variant. 2.4. Duffing oscillator. 2.5. Quadratic oscillators. 2.6. Piecewise-linear oscillators. 2.7. Signum oscillators. 2.8. Exponential oscillators. 2.9. Other undamped oscillators. 2.10. Velocity forced oscillators. 2.11. Parametric oscillators. 2.12. Complex oscillators -- 3. Autonomous dissipative systems. 3.1. Lorenz system. 3.2. Diffusionless Lorenz system. 3.3. Rs̈sler system. 3.4. Other quadratic systems. 3.5. Jerk systems. 3.6. Circulant systems. 3.7. Other systems -- 4. Autonomous Conservative Systems. 4.1. Nosé-Hoover oscillator. 4.2. Nosé-Hoover variants. 4.3. Jerk systems. 4.4. Circulant systems -- 5. Low-dimension systems (D3). 5.1. Dixon system. 5.2. Dixon variants. 5.3. Logarithmic case. 5.4. Other cases -- 6. High-dimensional systems (D3). 6.1. Periodically forced systems. 6.2. Master-slave oscillators. 6.3. Mutually coupled nonlinear oscillators. 6.4. Hamiltonian systems. 6.5. Anti-Newtonian systems. 6.6. Hyperjerk systems. 6.7. Hyperchaotic systems. 6.8. Autonomous complex systems. 6.9. Lotka-Volterra systems. 6.10. Artificial neural networks -- 7. Circulant systems. 7.1. Lorenz-Emanuel system. 7.2. Lotka-Volterra systems. 7.3. Antisymmetric quadratic system. 7.4. Quadratic ring system. 7.5. Cubic ring system. 7.6. Hyperlabyrinth system. 7.7. Circulant neural networks. 7.8. Hyperviscous ring. 7.9. Rings of oscillators. 7.10. Star systems -- 8. Spatiotemporal systems. 8.1. Numerical methods. 8.2. Kuramoto-Sivashinsky equation. 8.3. Kuramoto-Sivashinsky variants. 8.4. Chaotic traveling waves. 8.5. Continuum ring systems. 8.6. Traveling wave variants -- 9. Time-delay systems. 9.1. Delay differential equations. 9.2. Mackey-Glass equation. 9.3. Ikeda DDE. 9.4. Sinusoidal DDE. 9.5. Polynomial DDE. 9.6. Sigmoidal DDE. 9.7. Signum DDE. 9.8. Piecewise-linear DDEs. 9.9. Asymmetric logistic DDE with continuous delay -- 10. Chaotic electrical circuits. 10.1. Circuit elegance. 10.2. Forced relaxation oscillator. 10.3. Autonomous relaxation oscillator. 10.4. Coupled relaxation oscillators. 10.5. Forced diode resonator. 10.6. Saturating inductor circuit. 10.7. Forced piecewise-linear circuit. 10.8. Chua's circuit. 10.9. Nishio's circuit. 10.10. Wien-bridge oscillator. 10.11. Jerk circuits. 10.12. Master-slave oscillator. 10.13. Ring of oscillators. 10.14. Delay-line oscillator
 

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

1 Fundamentals
1
2 Periodically Forced Systems
41
3 Autonomous Dissipative Systems
61
4 Autonomous Conservative Systems
95
5 Lowdimensional Systems D 3
109
6 Highdimensional Systems D 3
115
7 Circulant Systems
165
8 Spatiotemporal Systems
195
9 TimeDelay Systems
221
10 Chaotic Electrical Circuits
233
Bibliography
265
Index
281
Copyright

Other editions - View all

Common terms and phrases

Bibliographic information