Proceedings of the Fourth International Symposium on Quantum Confinement: Nanoscale Materials, Devices, and SystemsM. Cahay |
Contents
3 | |
11 | |
28 | |
32 | |
35 | |
47 | |
59 | |
65 | |
242 | |
255 | |
269 | |
287 | |
298 | |
304 | |
319 | |
331 | |
79 | |
100 | |
117 | |
134 | |
146 | |
155 | |
165 | |
177 | |
185 | |
197 | |
211 | |
221 | |
231 | |
341 | |
353 | |
378 | |
388 | |
391 | |
402 | |
417 | |
425 | |
432 | |
444 | |
462 | |
474 | |
Common terms and phrases
2DEG absorption amorphous annealing Appl approximately bandgap binding energy bleaching band bulk calculated carriers Chem chemical clusters coefficients conduction band corresponding crystal curve decrease density dependence deposition device diameter dielectric disk donor dopant doped effect electron electron-hole emission epitaxy excitation exciton experimental Figure fluctuations frequency GaAs QWRs gate growth Hamiltonian hole increase interaction interface ions laser layer Lett luminescence magnetic field material matrix measured metal Mn2+ molecules MoS2 n-TiO2 film nanoclusters nanocrystallites nanocrystals nanoparticles nanostructures nanowires nonlinear observed obtained optical oxide oxygen particles peak phonon photoluminescence Phys PL intensity polariton polarity polymer porous potential quantum confinement quantum dot quantum wires radiation radius Raman recombination region resonant samples scattering semiconductor shown in Fig shows silicon solvent spectra spectrum structure subband substrate superlattice surface thickness TiO2 transition transmission tunneling valence band voltage wave functions wavelength width
Popular passages
Page 462 - School of Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907-1285.
Page 485 - CM Marcus, AJ Rimberg, RM Westervelt, PF Hopkins, and AC Gossard, Phys. Rev. Lett. 69, 506 (1992); CM Marcus, RM Westervelt, PF Hopkins, and AC Gossard, Chaos 3, 643 (1993).
Page 140 - L2207. [5] H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki and T. Nakagiri, Appl. Phys. Lett. 56 (1990) 2379.
Page 218 - RP Andres, T. Bein, M. Dorogi, S. Feng, JI Henderson, CP Kubiak, W. Mahoney, RG Osifchin, and R. Reifenberger, Science 272, 1323 (1996).
Page 213 - This route requires that the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the acceptor be smaller than the energy gap of the donor.
Page 26 - This work was supported by the US Dept. of Energy under contract No.
Page 140 - L. Tsybeskov, SP Duttagupta, KD Hirschman, and PM Fauchet, Appl. Phys. Lett. 68, 2058 (1996) 15.
Page 126 - S. Raymond, S. Fafard. PJ Poole, A. Wojs. P. Hawrylak, S. Charbonneau, D. Leonard, R. Leon. PM Petroff, and JL Merz, Phys. Rev. B 54, 11 548 (1996).
Page 253 - This work was supported by the US Army Research Office under Grant No. DAAL03-91-G-0230. REFERENCES 1. K. Xia and TG Langdon, "The Toughening and Strengthening of Ceramic Materials Through Discontinuous Reinforcement,
Page 240 - Ferreira, in Solid State Physics: Semiconductor Heterostructures, and Nanostructures, edited by H. Ehrenreich and D. Turnbull, Solid State Physics 44 (Academic, New York, 1991).