## On the Radical of Group Rings |

### From inside the book

4 pages matching **algebraically closed field** in this book

Where's the rest of this book?

Results 1-3 of 4

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Common terms and phrases

abelian group algebraically closed field artinian Chosun University coefficient ring commutative ring completes the proof converse statement Corollary dim N(KG divides the order element of G field of ch field whose characteristic finite normal subgroups finite subgroup finitely generated abelian finitely generated subgroup following theorem forms a basis G is locally group G group of order group ring KG H of G ideal of KG implies infinite cyclic group integers irreducible isomorphic J(KG J(KH Jacobson radical K-basis K-module Ker.f KG is semi-prime KG is semi-simple Lemma Let G Let H locally finite groups m-system maximal ideal modular representation theory nilpotent elements nilpotent ideal normal p-Sylow subgroup order pn p-element prime ideal prime radical principal indecomposable module Proposition 1-1 prove the following radical of KG set of orders subdirect product subgroup H subgroup of G subgroup of order submodule Supp(x Suppose Theorem 1-3 totally ordered groups x£KG