Arithmetic of Quadratic FormsThe aim of this book is to provide an introduction to quadratic forms that builds from basics up to the most recent results. Professor Kitaoka is well know for his work in this area, and in this book he covers many aspects of the subject, including lattice theory, Siegel's formula, and some results involving tensor products of positive definite quadratic forms. The reader is required to have only a knowledge of algebraic number fields, making this book ideal for graduate students and researchers wishing for an insight into quadratic forms. |
What people are saying - Write a review
We haven't found any reviews in the usual places.
Other editions - View all
Common terms and phrases
algebraic anisotropic Applying assertion assume assumption B(vi basis bilinear called chapter clear completes the proof condition consider contains contradicts Corollary decomposition define denote dependent E-type easy element equal example Exercise exists extension field F finite set fixed follows formula gen(L give given hence holds hyperbolic plane implies indecomposable independent induction infinite integer isometry isotropic Lemma matrix maximal means module Moreover positive definite positive lattice prime primitive Problem Proposition prove quadratic forms rank regular quadratic lattice regular quadratic space relatively represented resp respectively ring satisfies scaling side Similarly space over Q submodule sufficiently close sufficiently large Suppose symmetric Theorem theory unimodular unique vector verify virtue write yields
References to this book
Self-Dual Codes and Invariant Theory Gabriele Nebe,Eric M. Rains,Neil J. A. Sloane Limited preview - 2006 |
Algebraic and Arithmetic Theory of Quadratic Forms: Proceedings of the ... Ricardo Baeza No preview available - 2004 |