## Formulas and theorems in pure mathematics |

### From inside the book

Results 1-3 of 70

Page 247

1218 If the points A, 8 (Fig. 1162) be fixed, while C is moved to an infinite

distance, the conic

established for parts of the curve which remain finite, when AC thus

infinite, will ...

1218 If the points A, 8 (Fig. 1162) be fixed, while C is moved to an infinite

distance, the conic

**becomes**a parabola. Hence, any relation which has beenestablished for parts of the curve which remain finite, when AC thus

**becomes**infinite, will ...

Page 666

4846 A point

the line* 4847 A line through a fixed point

The intersection of two lines

4846 A point

**becomes**the polar of the point, and a right line**becomes**the pole ofthe line* 4847 A line through a fixed point

**becomes**a point on a fixed line. 4848The intersection of two lines

**becomes**the line which joins their poles.Page 798

by dividing the first row by Ax, and putting zx= <t>x + <t>ryx, dfm^f^+fvym &o. The

form of f (x, y, z) being, in this case, <p (x, y) — z, <pz

by dividing the first row by Ax, and putting zx= <t>x + <t>ryx, dfm^f^+fvym &o. The

form of f (x, y, z) being, in this case, <p (x, y) — z, <pz

**becomes**— 1, and d<j>t**becomes**zero. The determinant equation produces the quadratic. (ii.) Otherwise.### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Contents

Introduction The C G S System of Units | 1 |

VHI Common and Hyperbolic Logarithms of | 7 |

QUANT1C8 1620 | 30 |

Copyright | |

108 other sections not shown

### Common terms and phrases

becomes Binomial Theorem bisect changes of sign chord circumscribing circle columns conic conjugate constant continued fraction convergent cosec cosine curve denoted determinant diameter divided eliminant ellipse equal equate coefficients expand factors figure formula function given circle given ratio Hence hyperbola imaginary roots infinite inscribed circle integer integral intersect inverse points limits logarithm method Multiply negative nine-point circle notation obtained orthogonally pair parabola parallel partial fractions perpendicular plane positive powers Proof Proof.—By Proof.—In Proof.—Let Proof.—The quantic quantities quotient radical axis radius respect result right angle rows Rule sides similar triangles Similarly sine singular solution solution squares substituting successive tangent Taylor's theorem theorem tion transformed triangle ABC unity vanishes variables zero