Practical Fourier Analysis for Multigrid Methods

Front Cover
CRC Press, Oct 28, 2004 - Mathematics - 240 pages
0 Reviews
Before applying multigrid methods to a project, mathematicians, scientists, and engineers need to answer questions related to the quality of convergence, whether a development will pay out, whether multigrid will work for a particular application, and what the numerical properties are. Practical Fourier Analysis for Multigrid Methods uses a detailed and systematic description of local Fourier k-grid (k=1,2,3) analysis for general systems of partial differential equations to provide a framework that answers these questions.

This volume contains software that confirms written statements about convergence and efficiency of algorithms and is easily adapted to new applications. Providing theoretical background and the linkage between theory and practice, the text and software quickly combine learning by reading and learning by doing. The book enables understanding of basic principles of multigrid and local Fourier analysis, and also describes the theory important to those who need to delve deeper into the details of the subject.

The first chapter delivers an explanation of concepts, including Fourier components and multigrid principles. Chapter 2 highlights the basic elements of local Fourier analysis and the limits to this approach. Chapter 3 examines multigrid methods and components, supported by a user-friendly GUI. Chapter 4 provides case studies for two- and three-dimensional problems. Chapters 5 and 6 detail the mathematics embedded within the software system. Chapter 7 presents recent developments and further applications of local Fourier analysis for multigrid methods.
 

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

INTRODUCTION
3
MAIN FEATURES OF LOCAL FOURIER ANALYSIS FOR MULTIGRID
29
MULTIGRID AND ITS COMPONENTS IN LFA
35
USING THE FOURIER ANALYSIS SOFTWARE
57
The Theory behind LFA
97
FOURIER ONEGRID OR SMOOTHING ANALYSIS
99
FOURIER TWO AND THREEGRID ANALYSIS
147
FURTHER APPLICATIONS OF LOCAL FOURIER ANALYSIS
183
FOURIER REPRESENTATION OF RELAXATION
203
REFERENCES
207
Index
213
Copyright

Common terms and phrases

Bibliographic information