## Quantum mechanics II: a second course in quantum theory, Volume 2The first section presents detailed and thorough coverage of integral quantum mechanics and scattering. In the second section, an operational treatment of relativistic quantum mechanics is provided. Quantum fields are introduced in the third part, using perturbation theory to emphasize the connections with familiar quantum mechanics, and the field theory is illustrated with examples of actual physical processes. |

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Contents

Continuum Quantum Mechanics | 3 |

Currents and Cross Sections | 18 |

PartialWave Functions and Expansions | 30 |

Copyright | |

28 other sections not shown

### Common terms and phrases

4-vector angle angular momentum atom axis beam Born approximation boson bound bound-state boundary conditions calculate Chap chapter classical components coordinates Coulomb potential coupling covariant decay deduce density dependence Derive describe determine differential cross section Dirac equation eigenstates eigenvalue elastic scattering electromagnetic electron equivalent evaluate Exercise Show Exercise Verify expansion exponential Fermi fermions field operator field theory finite Fock space Green's function Hamiltonian Hartree-Fock hydrogen infinite integral equation interaction kinetic energy Klein-Gordon equation Lorentz transformation LS equation magnetic mass matrix element momenta momentum space negative-energy normalization nucleon nucleus obtain partial-wave particles Pauli phase shifts photon physical plane waves plane-wave polarization positive-energy positron Prob problem quantized quantum mechanics quantum number radiation relation relativistic representation resonance scalar scattered wave scattering amplitude scattering length Schrodinger equation second quantization single-particle solution solve spinors substitute target tion transition vector velocity wave equation wave function zero