Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference

Front Cover
Morgan Kaufmann, 1988 - Computers - 552 pages
4 Reviews

Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic.

The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information.


Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.

From inside the book

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

UNCERTAINTY IN Al SYSTEMS AN OVERVIEW
1
MERITS DEFICIENCIES AND REMEDIES
4
13 INTENSIONAL SYSTEMS AND NETWORK REPRESENTATIONS
12
Copyright

69 other sections not shown

Other editions - View all

Common terms and phrases

References to this book

All Book Search results »

About the author (1988)

Judea Pearl is professor of computer science and statistics at the University of California, Los Angeles, where he directs the Cognitive Systems Laboratory and conducts research in artificial intelligence, human reasoning, and philosophy of science. The author of Heuristics and Probabilistic Reasoning, he is a member of the National Academy of Engineering and a Founding Fellow of the American Association for Artificial Intelligence. Dr Pearl is the recipient of the IJCAI Research Excellence Award for 1999, the London School of Economics Lakatos Award for 2001, and the ACM Alan Newell Award for 2004. In 2008, he received the Franklin Medal for computer and cognitive science from the Franklin Institute.

Bibliographic information