Riemannian Geometry and Geometric Analysis

Front Cover
Springer Science & Business Media, Apr 17, 2013 - Mathematics - 404 pages
The present textbook is a somewhat expanded version of the material of a three-semester course I gave in Bochum. It attempts a synthesis of geometric and analytic methods in the study of Riemannian manifolds. In the first chapter, we introduce the basic geometric concepts, like dif ferentiable manifolds, tangent spaces, vector bundles, vector fields and one parameter groups of diffeomorphisms, Lie algebras and groups and in par ticular Riemannian metrics. We also derive some elementary results about geodesics. The second chapter introduces de Rham cohomology groups and the es sential tools from elliptic PDE for treating these groups. In later chapters, we shall encounter nonlinear versions of the methods presented here. The third chapter treats the general theory of connections and curvature. In the fourth chapter, we introduce Jacobi fields, prove the Rauch com parison theorems for Jacobi fields and apply these results to geodesics. These first four chapters treat the more elementary and basic aspects of the subject. Their results will be used in the remaining, more advanced chapters that are essentially independent of each other. In the fifth chapter, we develop Morse theory and apply it to the study of geodesics. The sixth chapter treats symmetric spaces as important examples of Rie mannian manifolds in detail.

What people are saying - Write a review

We haven't found any reviews in the usual places.


Foundational Material
De Rham Cohomology and Harmonic
Parallel Transport Connections
Geodesics and Jacobi Fields
A Short Survey on Curvature and Topology 165
Morse Theory and Closed Geodesics
Symmetric Spaces and Kähler Manifolds
The PalaisSmale Condition and Closed Geodesics 263
Harmonic Maps
Linear Elliptic Partial Differential Equations
Fundamental Groups and Covering Spaces

Other editions - View all

Common terms and phrases