Mathematics — The Music of ReasonThis book is of interest for students of mathematics or of neighboring subjects like physics, engineering, computer science, and also for people who have at least school level mathematics and have kept some interest in it. Also good for younger readers just reaching their final school year of mathematics. |
Contents
II | 7 |
III | 8 |
IV | 12 |
V | 14 |
VI | 19 |
VII | 21 |
IX | 25 |
X | 26 |
LVII | 149 |
LVIII | 150 |
LIX | 152 |
LX | 161 |
LXII | 163 |
LXIII | 167 |
LXIV | 168 |
LXV | 169 |
XI | 28 |
XII | 29 |
XIII | 31 |
XIV | 33 |
XV | 35 |
XVI | 37 |
XVII | 41 |
XVIII | 45 |
XIX | 49 |
XX | 51 |
XXI | 56 |
XXII | 64 |
XXIII | 65 |
XXIV | 68 |
XXV | 70 |
XXVI | 72 |
XXVII | 77 |
XXIX | 78 |
XXX | 79 |
XXXI | 80 |
XXXII | 82 |
XXXIII | 86 |
XXXIV | 91 |
XXXV | 93 |
XXXVI | 95 |
XXXVII | 98 |
XXXVIII | 103 |
XXXIX | 105 |
XL | 108 |
XLI | 111 |
XLII | 113 |
XLIII | 118 |
XLIV | 119 |
XLV | 120 |
XLVI | 121 |
XLVII | 124 |
XLVIII | 128 |
XLIX | 129 |
L | 133 |
LI | 134 |
LII | 136 |
LIII | 139 |
LIV | 141 |
LV | 142 |
LVI | 146 |
LXVI | 170 |
LXVII | 172 |
LXVIII | 174 |
LXIX | 176 |
LXX | 179 |
LXXI | 181 |
LXXII | 183 |
LXXIII | 184 |
LXXIV | 187 |
LXXV | 190 |
LXXVI | 191 |
LXXVII | 192 |
LXXVIII | 195 |
LXXIX | 199 |
LXXX | 200 |
LXXXI | 203 |
LXXXII | 204 |
LXXXIII | 207 |
LXXXIV | 208 |
LXXXV | 213 |
LXXXVI | 215 |
LXXXVII | 216 |
LXXXVIII | 218 |
LXXXIX | 220 |
XC | 222 |
XCI | 224 |
XCII | 226 |
XCIII | 228 |
XCIV | 229 |
XCV | 230 |
XCVI | 233 |
XCVII | 234 |
XCVIII | 235 |
XCIX | 239 |
C | 241 |
CI | 245 |
CII | 246 |
CIV | 247 |
CV | 248 |
CVI | 250 |
CVII | 253 |
CVIII | 255 |
281 | |
282 | |
Other editions - View all
Common terms and phrases
addition algebraic algebraic topology analysis angles appeared Appendix applications argument arithmetic axioms become beginning bijection Book calculation called Chapter circle classes classical common commutative complex concept considered construction contained continuous corresponding course curve defined definition denoted described element equal equation equivalent Euclid example exists fact field Figure finite formula functions Gauss geometry give given Greeks idea infinite integer interval known language length limit mapping mathematicians mathematics means method multiplication natural numbers necessary nineteenth century objects obtained plane polynomial positive possible prime numbers problems proof properties proved question rational real numbers relation respect ring roots satisfies sequence side solution space square structure subgroup subset surface theorem theory true values variables write written
Popular passages
Page v - Il est vrai que M. Fourier avait l'opinion que le but principal des Mathématiques était l'utilité publique et l'explication des phénomènes naturels; mais un philosophe comme lui aurait dû savoir que le but unique de la Science, c'est l'honneur de l'esprit humain, et que sous ce titre une question de nombres vaut autant qu'une question du système du monde.
Page v - Algebraical Researches, Containing a Disquisition on Newton's Rule for the Discovery of Imaginary Roots, and an Allied Rule Applicable to a Particular Class of Equations, Together with a Complete Invariantive Determination of the Character of the Roots of the General Equation of the Fifth Degree, &c," Philosophical Transactions of the Royal Society of London 154 (1864): 579666, and Math.
References to this book
Oxford Users' Guide to Mathematics Eberhard Zeidler,W. Hackbusch,Hans Rudolf Schwarz No preview available - 2004 |
Proofs and Fundamentals: A First Course in Abstract Mathematics Ethan D. Bloch No preview available - 2000 |