Topological Graph Theory

Front Cover
Dover Publications, 1987 - Mathematics - 361 pages
0 Reviews
Clear, comprehensive introduction emphasizes graph imbedding but also covers thoroughly the connections between topological graph theory and other areas of mathematics. Discussion of imbeddings into surfaces is combined with a complete proof of the classification of closed surfaces. Authors explore the role of voltage graphs in the derivation of genus formulas, explain the Ringel-Youngs theorem — a proof that revolutionized the field of graph theory — and examine the genus of a group, including imbeddings of Cayley graphs. 1987 edition. Many figures.

What people are saying - Write a review

We haven't found any reviews in the usual places.

Other editions - View all

References to this book

All Book Search results »

About the author (1987)

Jonathan L. Gross is Professor of Computer Science at Columbia University. His mathematical work in topology and graph theory have earned him an Alfred P. Sloan Fellowship, an IBM Postdoctoral Fellowship, and numerous research grants. With Thomas Tucker, he wrote Topological Graph Theory and several fundamental pioneering papers on voltage graphs and on enumerative methods. He has written and edited eight books on graph theory and combinatorics, seven books on computer programming topics, and one book on cultural sociometry.

Thomas W. Tucker is the Charles Hetherington Professor of Mathematics at Colgate University, where he has been since 1973, after a PhD in 3-manifolds from Dartmouth in 1971 and a postdoc at Princeton (where his father A. W. Tucker was chairman and John Nash's thesis advisor). He is co-author (with Jonathan Gross) of Topological Graph Theory. His early publications were on non-compact 3-manifolds, then topological graph theory, but his recent work is mostly algebraic, especially distinguishability and the group-theoretic structure of symmetric maps.

Bibliographic information