Rock Quality, Seismic Velocity, Attenuation and Anisotropy

Front Cover
CRC Press, Jan 24, 2007 - Technology & Engineering - 729 pages

Seismic measurements take many forms, and appear to have a universal role in the Earth Sciences. They are the means for most easily and economically interpreting what lies beneath the visible surface. There are huge economic rewards and losses to be made when interpreting the shallow crust or subsurface more, or less accurately, as the case may be.

This book describes seismic behaviour at many scales and from numerous fields in geophysics, tectonophysics and rock physics, and from civil, mining and petroleum engineering. Addressing key items for improved understanding of seismic behaviour, it often interprets seismic measurements in rock mechanics terms, with particular attention to the cause of attenuation, its inverse seismic quality, and the anisotropy of fracture compliances and stiffnesses.

Reviewed behaviour stretches over ten orders of magnitude, from micro-crack compliance in laboratory tests to cross-continent attenuation. Between these extremes lie seismic investigation of rock joints, boreholes, block tests, dam and bridge foundations, quarry blasting, canal excavations, hydropower and transportation tunnels, machine bored TBM tunnels, sub-sea sediment and mid-ocean ridge measurements, where the emphasis is on velocity-depth-age models. Attenuation of earthquake coda-waves is also treated, including in-well measurements.

In the later chapters, there is a general emphasis on deeper, higher stress, larger scale applications of seismic, such as shear-wave splitting for interpreting the attenuation, anisotropy and orientation of permeable 'open' fracture sets in petroleum reservoirs, and the 4D seismic effects of water-flood, oil production and compaction. The dispersive or frequency dependence of most seismic measurements and their dependence on fracture dimensions and fracture density is emphasized. The possibility that shear displacement may be required to explain permeability at depth is quantified.

This book is cross-disciplinary, non-mathematical and phenomenological in nature, containing a wealth of figures and a wide review of the literature from many fields in the Earth Sciences. Including a chapter of conclusions and an extensive subject index, it is a unique reference work for professionals, researchers, university teachers and students working in the fields of geophysics, civil, mining and petroleum engineering. It will be particularly relevant to geophysicists, engineering geologists and geologists who are engaged in the interpretation of seismic measurements in rock and petroleum engineering.

 

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

Part II
179
Appendix A The Qrock parameter ratings
615
Appendix B A worked example
625
References
627
Index
655
Color Plates
721
Copyright

Other editions - View all

Common terms and phrases

About the author (2007)

Nick Barton has over 40 years of international experience in rock engineering, and has been involved in numerous important and iconic tunnel, cavern and rock slope projects. He has developed many tools and methods, such as the widely used Q-system, for rock classification and support selection and the Barton-Bandis constitutive laws for rock joint computer modeling. He currently teaches at the University of So Paulo and manages an international consultancy (Nick Barton & Associates, So Paulo – Oslo).

Dr. Nick Barton was the 2011 recipient of the distinguished Mller Award, an award that honours the memory of Professor Leopold Mller, the founder of the ISRM (International Society of Rock Mechanics), and awarded in recognition of distinguished contributions to the profession of rock mechanics and rock engineering.

Bibliographic information