An Introduction to the Theory of Numbers

Front Cover
OUP Oxford, Jul 31, 2008 - Mathematics - 621 pages
8 Reviews
An Introduction to the Theory of Numbers by G.H. Hardy and E. M. Wright is found on the reading list of virtually all elementary number theory courses and is widely regarded as the primary and classic text in elementary number theory. Developed under the guidance of D.R. Heath-Brown this Sixth Edition of An Introduction to the Theory of Numbers has been extensively revised and updated to guide today's students through the key milestones and developments in number theory. Updates include a chapter by J.H. Silverman on one of the most important developments in number theory — modular elliptic curves and their role in the proof of Fermat's Last Theorem — a foreword by A. Wiles, and comprehensively updated end-of-chapter notes detailing the key developments in number theory. Suggestions for further reading are also included for the more avid reader The text retains the style and clarity of previous editions making it highly suitable for undergraduates in mathematics from the first year upwards as well as an essential reference for all number theorists.
 

What people are saying - Write a review

User ratings

5 stars
2
4 stars
5
3 stars
1
2 stars
0
1 star
0

Review: An Introduction to the Theory of Numbers

User Review  - sqrt2 - Goodreads

didn't finish , theres no button that says "stopped reading" Read full review

Review: An Introduction to the Theory of Numbers

User Review  - Mikesokolov - Goodreads

I got a lot out of it, but ultimately didn't finish.. can't say why really; maybe the same reason I didn't get a graduate math degree Read full review

All 5 reviews »

Contents

I
1
II
2
III
3
IV
4
V
6
VI
7
VII
9
VIII
10
CXXXVI
270
CXXXVII
273
CXXXVIII
274
CXXXIX
276
CXL
279
CXLI
283
CXLII
285
CXLIII
286

IX
14
X
15
XI
17
XII
18
XIII
20
XIV
21
XV
23
XVII
25
XVIII
26
XIX
28
XX
29
XXI
30
XXII
31
XXIII
32
XXIV
33
XXV
35
XXVI
36
XXVII
37
XXVIII
39
XXIX
40
XXX
45
XXXI
46
XXXII
47
XXXIII
49
XXXIV
50
XXXV
52
XXXVI
53
XXXVII
57
XXXVIII
58
XXXIX
60
XLI
63
XLII
65
XLIII
70
XLIV
71
XLV
78
XLVI
79
XLVII
81
XLVIII
82
XLIX
83
L
85
LI
87
LII
89
LIII
91
LIV
92
LV
95
LVI
97
LVII
98
LVIII
100
LIX
105
LX
106
LXI
108
LXII
110
LXIII
111
LXIV
112
LXV
115
LXVI
116
LXVII
120
LXVIII
122
LXIX
123
LXX
125
LXXI
126
LXXII
129
LXXIII
130
LXXIV
132
LXXV
135
LXXVI
138
LXXVII
141
LXXVIII
144
LXXIX
145
LXXX
147
LXXXI
149
LXXXII
151
LXXXIII
154
LXXXIV
155
LXXXV
157
LXXXVI
158
LXXXVII
160
LXXXVIII
165
LXXXIX
166
XC
168
XCI
169
XCII
170
XCIII
172
XCIV
175
XCV
177
XCVI
178
XCVII
180
XCVIII
181
XCIX
184
C
187
CI
190
CII
194
CIII
198
CIV
199
CV
201
CVI
202
CVII
203
CVIII
205
CIX
206
CX
208
CXI
210
CXII
212
CXIII
216
CXIV
217
CXV
218
CXVI
223
CXVII
229
CXVIII
230
CXIX
231
CXX
232
CXXI
234
CXXII
235
CXXIII
236
CXXIV
238
CXXV
241
CXXVI
245
CXXVII
247
CXXVIII
248
CXXIX
253
CXXX
254
CXXXI
257
CXXXII
264
CXXXIII
265
CXXXIV
267
CXXXV
268
CXLIV
287
CXLV
290
CXLVI
293
CXLVII
295
CXLVIII
299
CXLIX
302
CL
303
CLI
304
CLII
305
CLIII
307
CLIV
308
CLV
310
CLVI
311
CLVII
313
CLVIII
315
CLIX
318
CLX
320
CLXI
321
CLXII
323
CLXIII
326
CLXIV
328
CLXV
331
CLXVI
334
CLXVII
337
CLXVIII
338
CLXIX
342
CLXX
347
CLXXI
350
CLXXII
352
CLXXIII
353
CLXXIV
355
CLXXV
356
CLXXVI
361
CLXXVII
362
CLXXVIII
365
CLXXIX
366
CLXXX
369
CLXXXI
371
CLXXXII
372
CLXXXIII
375
CLXXXIV
378
CLXXXV
379
CLXXXVI
380
CLXXXVII
383
CLXXXVIII
386
CLXXXIX
389
CXC
393
CXCI
395
CXCIII
397
CXCIV
399
CXCV
401
CXCVI
403
CXCVII
405
CXCVIII
407
CXCIX
409
CC
410
CCI
411
CCII
415
CCIII
419
CCIV
420
CCV
422
CCVI
424
CCVII
425
CCVIII
426
CCIX
431
CCX
433
CCXI
435
CCXII
437
CCXIII
440
CCXIV
451
CCXV
453
CCXVI
455
CCXVII
458
CCXVIII
460
CCXIX
461
CCXX
464
CCXXI
466
CCXXII
469
CCXXIII
471
CCXXIV
473
CCXXV
476
CCXXVI
477
CCXXVII
478
CCXXVIII
481
CCXXIX
486
CCXXX
489
CCXXXI
490
CCXXXII
494
CCXXXIII
495
CCXXXIV
501
CCXXXV
502
CCXXXVI
505
CCXXXVII
508
CCXXXVIII
510
CCXXXIX
512
CCXLI
514
CCXLII
517
CCXLIII
520
CCXLIV
523
CCXLV
524
CCXLVI
527
CCXLVII
529
CCXLVIII
530
CCXLIX
532
CCL
534
CCLI
536
CCLII
537
CCLIII
540
CCLIV
549
CCLV
550
CCLVI
556
CCLVII
559
CCLVIII
564
CCLIX
573
CCLX
574
CCLXI
578
CCLXII
582
CCLXIII
586
CCLXIV
593
CCLXV
594
CCLXVI
597
CCLXVII
601
CCLXVIII
605
CCLXIX
611
Copyright

Common terms and phrases

References to this book

All Book Search results »

About the author (2008)


Roger Heath-Brown F.R.S. was born in 1952, and is currently Professor of
Pure Mathematics at Oxford University. He works in analytic number
theory, and in particular on its applications to prime numbers and to
Diophantine equations.

Bibliographic information