Quantitative Seismology

Front Cover
University Science Books, 2002 - Science - 700 pages
9 Reviews
Table of Contents
1. Introduction
Suggestions for Further Reading
2. Basic Theorems in Dynamic Elasticity
2.1 Formulation
2.2 Stress-Strain Relations and the Strain-Energy Function
2.3 Theorems of Uniqueness and Reciprocity
2.4 Introducing Green’s Function for Elastodynamics
2.5 Representation Theorems
2.6 Strain-Displacement Relations and Displacement-Stress Relations in General Orthogonal Curvilinear Coordinates
Suggestions for Further Reading
3. Representation of Seismic Sources
3.1 Representation Theorems for an Internal Surface: Body-Force Equivalents for Discontinuities in Traction and Displacement
3.2 A Simple Example of Slip on a Buried Fault
3.3 General Analysis of Displacement Discontinuities across an Internal Surface E
3.4 Volume Sources: Outline of the Theory and Some Simple Examples
Suggestions for Further Reading
4. Elastic Waves from a Point Dislocation Source
4.1 Formulation: Introduction of Potentials
4.2 Solution for the Elastodynamic Green Function in a Homogeneous, Isotropic Unbounded Medium
4.3 The Double-Couple Solution in an Infinite Homogeneous Medium
4.4 Ray Theory for Far-Field P-waves and S-waves from a Point Source
4.5 The Radiation Pattern of Body Waves in the Far Field for a Point Shear Dislocation of Arbitrary Orientation in a Spherically Symmetric Medium
Suggestions for Further Reading
5. Plane Waves in Homogeneous Media and Their Reflection and Transmission at a Plane Boundary
5.1 Basic Properties of Plane Waves in Elastic Media
5.2 Elementary Formulas for Reflection/Conversion/Transmission Coefficients
page 148.8, "are insensitive to first-order changes", let it read "have no sensitivity" [April 2003]
page 148.9, "and discussed by Russell (1993)", let it read "and discussed by Russell (1993) and (Ramos, Antonio C. B., and John P. Castagna, Useful approximations for converted-wave AVO, Geophysics, 66: 1721--1734, 2001)"
5.3 Inhomogeneous Waves, Phase Shifts, and Interface Waves
5.4 A Matrix Method for Analyzing Plane Waves in Homogeneous Media
5.5 Wave Propagation in an Attenuating Medium: Basic Theory for Plane Waves
5.6 Wave Propagation in an Elastic Anisotropic Medium: Basic Theory for Plane Waves
Suggestions for Further Reading
new problem
6. Reflection and Refraction of Spherical Waves; Lamb’s Problem
6.1 Spherical Waves as a Superposition of Plane Waves and Conical Waves
6.2 Reflection of Spherical Waves at a Plane Boundary: Acoustic Waves
correction to Figures 6.6, 6.12cde
6.3 Spherical Waves in an Elastic Half-Space: The Rayleigh Pole
6.4 Cagniard-De Hoop Methods for Line Sources
6.5 Cagniard-De Hoop Methods for Point Sources
6.6 Summary of Main Results and Comparison between Different Methods
Suggestions for Further Reading
7. Surface Waves in a Vertically Heterogeneous Medium
7.1 Basic Properties of Surface Waves
7.2 Eigenvalue Problem for the Displacement-Stress Vector
7.3 Variational Principle for Love and Rayleigh Waves
7.4 Surface-Wave Terms of Green’s Function for a Vertically Heterogeneous Medium
7.5 Love and Rayleigh Waves from a Point Source with Arbitrary Seismic Moment
7.6 Leaky Modes
Suggestions for Further Reading
8. Free Oscillations of the Earth
8.1 Free Oscillations of a Homogeneous Liquid Sphere
8.2 Excitation of Free Oscillations by a Point Source
8.3 Surface Waves on the Spherical Earth
8.4 Free Oscillations of a Self-Gravitating Earth
8.5 The Centroid Moment Tensor
8.6 Splitting of Normal Modes Due to the Earth’s Rotation
8.7 Spectral Splitting of Free Oscillations Due to Lateral Inhomogeneity of the Earth’s Structure
Suggestions for Further Reading
9. Body Waves in Media with Depth-Dependent Properties
9.1 Cagniard’s Method for a Medium with Many Plane Layers: Analysis of a Generalized Ray
9.2 The Reflectivity Method for a Medium with Many Plane Layers
9.3 Classical Ray Theory in Seismology
9.4 Inversion of Travel-Time Data to Infer Earth Structure
Additional explanatory Figures, showing ray paths and reduced travel-time curves
9.5 Wave Propagation in Media Having Smoothly Varying Depth-Dependent Velocity Profiles within Which Turning Points Are Present
9.6 Body-Wave Problems for Spherically Symmetric Earth Models in Which Discontinuities are Present between In homogeneous Layers
9.7 Comparison between Different Methods
Suggestions for Further Reading
10. The Seismic Source: Kinematics
10.1 Kinematics of an Earthquake as Seen at Far Field
10.2 Kinematics of an Earthquake as Seen at Near Field
Suggestions for Further Reading
11. The Seismic Source: Dynamics
11.1 Dynamics of a Crack Propagating with Prescribed Velocity
11.2 Dynamics of Spontaneous Planar Rupture Propagation
Suggestions for Further Reading
12. Principles of Seismometry
12.1 Basic Instrumentation
12.2 Frequency and Dynamic Range of Seismic Signals and Noise
12.3 Detection of Signal
Suggestions for Further Reading
Appendix 1: Glossary of Waves
Appendix 2: Definition of Magnitudes

What people are saying - Write a review

User ratings

5 stars
4 stars
3 stars
2 stars
1 star

User Review - Flag as inappropriate

Really great book for understanding the theory behind seismology. It progresses fairly naturally and doesn't presume too much background knowledge. My only complaint would be the lack of explanation of some important topics such as the propagator method. This book goes into great detail on seismic sources.  

User Review - Flag as inappropriate

This one is called the bible of seismology. Though it is kind of old but it is not out of date, and has all of the subjects a seismologist (especially in Earthquake and Seismological Engineering) needs. Explanations are great but be aware, this is not a dummy book: you need to have a good basis of mathematics and algebra. All and all a must have book for a seismologist ... 

Other editions - View all

References to this book

All Book Search results »

About the author (2002)

Until his death in 2005, Keiiti Aki resided on Runion Island in the Indian Ocean. His distinguished career included faculty appointments for many years at the Massachusetts Institute of Technology and the University of Southern California.

Bibliographic information