Front Cover
'Phylogenetics' is the reconstruction and analysis of phylogenetic (evolutionary) trees and networks based on inherited characteristics. It is a flourishing area of intereaction between mathematics, statistics, computer science and biology.The main role of phylogenetic techniques lies in evolutionary biology, where it is used to infer historical relationships between species. However, the methods are also relevant to a diverse range of fields including epidemiology, ecology, medicine, as well as linguistics and cognitive psychologyThis graduate-level book, based on the authors lectures at The University of Canterbury, New Zealand, focuses on the mathematical aspects of phylogenetics. It brings together the central results of the field (providing proofs of the main theorem), outlines their biological significance,and indicateshow algorithms may be derived. The presentation is self-contained and relies on discrete mathematics with some probability theory. A set of exercises and at least one specialist topic ends each chapter.This book is intended for biologists interested in the mathematical theory behind phylogenetic methods, and for mathematicians, statisticians, and computer scientists eager to learn about this emerging area of discrete mathematics.'Phylogenetics' in the 24th volume in the Oxford Lecture Series in Mathematics and its Applications. This series contains short books suitable for graduate students and researchers who want a well-written account of mathematics that is fundamental to current to research. The series emphasises futuredirections of research and focuses on genuine applications of mathematics to finance, engineering and the physical and biological sciences.

What people are saying - Write a review

We haven't found any reviews in the usual places.


Trees and splits
Compatibility of characters
Maximum parsimony
Subtrees and supertrees
Treebased metrics
Markov models on trees
Commonly used symbols

Common terms and phrases

References to this book

All Book Search results »

About the author (2003)

Charles Semple and Mike Steele are both in the Department of Mathematics and Statistics, University of Canterbury; Allan Wilson Centre for Molecular Ecology and Evolution, New Zealand.