Computational Physics: Fortran Version

Front Cover
Westview Press, Aug 12, 1998 - Computers - 639 pages
1 Review
Computational Physics is designed to provide direct experience in the computer modeling of physical systems. Its scope includes the essential numerical techniques needed to "do physics" on a computer. Each of these is developed heuristically in the text, with the aid of simple mathematical illustrations. However, the real value of the book is in the eight Examples and Projects, where the reader is guided in applying these techniques to substantial problems in classical, quantum, or statistical mechanics. These problems have been chosen to enrich the standard physics curriculum at the advanced undergraduate or beginning graduate level. The book will also be useful to physicists, engineers, and chemists interested in computer modeling and numerical techniques. Although the user-friendly and fully documented programs are written in FORTRAN, a casual familiarity with any other high-level language, such as BASIC, PASCAL, or C, is sufficient. The codes in BASIC and FORTRAN are available on the web at (Please follow the link at the bottom of the page). They are available in zip format, which can be expanded on UNIX, Window, and Mac systems with the proper software. The codes are suitable for use (with minor changes) on any machine with a FORTRAN-77 compatible compiler or BASIC compiler. The FORTRAN graphics codes are available as well. However, as they were originally written to run on the VAX, major modifications must be made to make them run on other machines.

What people are saying - Write a review

We haven't found any reviews in the usual places.


Chapter 1 Basic Mathematical Operations
Scattering by a central potential
Boundary Value and Eigenvalue Problems
Chapter 4 Special Functions and Gaussian Quadrature
Matrix Operations
Chapter 6s Elliptic Partial Differential Equations
Parabolic Partial Differential Equations
Monte Carlo Methods
How to use the programs
Programs for the Examples
Programs for the Projects
Common Utility Codes
Appendix E Network File Transfer
Index 681

Other editions - View all

Common terms and phrases

Popular passages

Page 208 - Gaussian-distributed random numbers is based on the central limit theorem, which states that the sum of a large number of independent random variables is Gaussian.
Page 100 - Another immediate consequence of unitarity is the optical theorem, which relates the total cross section to the imaginary part of the forward scattering amplitude.
Page 127 - ... surface thickness', the distance over which the density drops from 90% to 10% of its maximum value.
Page 75 - The kinetic energy is the sum of the kinetic energies of the...
Page 55 - Jacobi equation for a particle of mass m and energy E moving in a potential V(r), The preceding mechanics considerations can thus be translated into optics equivalents.13 Of course, phase <|>(r) is dimensionless, whereas W(r) has the dimensions of "action.
Page 69 - V0v(x), where the dimensionless function v(x) has a minimum value of —1 and a maximum value of +1.
Page 22 - The factor of 2 in front of the integral accounts for the fact that there are two active force producing surfaces in this particular machine.
Page 190 - Setting all derivatives to zero yields a set of algebraic equations that can be solved for the equilibrium point.
Page 215 - This mimics the spin-1/2 situation, although note that we take the spins to be classical degrees of freedom and do not impose the angular momentum commutation rules characteristic of a quantum description.

References to this book

About the author (1998)

Steven Koonin is Professor of Theoretical Physics and Provost at California Institute of Technology, where he has been a member of the faculty since 1975. He received his BS in physics from Caltech in 1972 and his Ph.D. in theoretical nuclear physics from MIT in 1975. Dr. Koonin’s research interests include the theoretical description of nuclei and atoms. He is the author or co-author of numerous published papers and books, many involving large-scale numerical computation. Dawn Meredith is Associate Professor of Physics at the University of New Hampshire. She received her BA degree in Liberal Arts from St. John’s College in Santa Fe, New Mexico and her Ph.D. degree in Physics from the California Institute of Technology. Dr. Meredith’s research began in the study of nonlinear dynamics, and now focuses on physics education.

Bibliographic information