Page images
PDF
EPUB

the germinal layers, and that by differentiation of the cells of these layers are formed all the tissues of the body.

Kowalevsky, of St. Petersburg, found the two primary germinal layers also in Worms, Echinoderms, Articulata, and other animals.

Haeckel, in 1872, found the same in the Sponges. He stated that these two germinal layers occur in all animals, except in the Protozoa; and that they are homologous, or equivalent, in all the groups of animals, from the Sponges up to Man. In 1873, in 'Gastræa-theorie,' he explained the phylogenetic significance, and tried to show the homology, of the four secondary germinal layers.

his

FACTORS OF EVOLUTION.

AN organism, as living matter, does not stand in opposition to, or outside of, the rest of the world. It is part of the world. It receives matter from its surroundings, and gives some back; therefore it is influenced. by its surroundings. It is acted upon, and it reacts upon the latter, and if these change (and they are nowhere and never strictly the same) the organism also varies. It adapts itself, and if it does not, or, rather, cannot, do so, it dies, because it is unfit to live in the world, or, rather, in those particular surroundings and conditions in which it happens to be. That organism which yields most easily, accommodates itself most quickly, has the best chance of existence-survival of the fittest.

Fitness' in this case does not mean fitness to live, but rather a particular condition which happens to fit into the new circumstances.

Adaptation and variation are simultaneous: they are fundamentally the same. If there were no adaptability and no variability, those simplest of organisms which we suppose to have sprung into existence in the pre-Cambrian period would long ago have ceased to exist.

It is the physiological momentum which models the organism, and, by causing its adaptations, has produced its organs by change of function. Gegenbaur illustrates this most important fundamental truth by an excellent example. Suppose that, in an absolutely simple organism, all the parts of its exterior are under the same functional conditions, so that each part of the surface can take in food, and that this is digested, assimilated, in the interior. There is, in this condition, not yet any definite organ. If this organism sinks to the bottom and

becomes sessile, this part is excluded from taking in nourishing matter, while the opposite surface alone remains, or becomes more, fit for this function. Thus, a simple variation and adaptation has been produced, and if the same organism continues in this position, its bottom cells will estrange themselves from their original function, while those on the top will convey the food into the interior, where a cavity will be formed, ultimately with a permanent opening, the primitive gut and mouth, both very different from the 'foot.'

Thus, by adaptation and variation the organism acquires new functions, organs, features, and it gives up and eventually loses others. Its offspring is like it. Like produces like. This is the principle of heredity. Adaptation, when going on generation after generation on the same lines in the same direction, becomes continuous, and has an intensifying, cumulative effect. By always weeding out from a flock of pigeons those birds

which possess more dark feathers than the rest, we ultimately produce an entirely white race. We hurry on what Nature does slowly.

The inheritance of acquired characters becomes very obvious in the following example: The Monera are the lowest living organisms known; they consist of a mass of protoplasm, and are still devoid of even a nucleus. They multiply simply by division ; each half is like the other, and like the parent (which by this process has ceased to exist), except that each is smaller and has to grow. A certain Moneron, Protomyxa aurantiaca, is orange-coloured, and its offspring is from the beginning of the same colour, and this colour has been acquired by that kind of Monera-like protoplasm which thereby has become the species called Aurantiaca. We have no reason for assuming that there existed from the beginning of life not only colourless, but also red, orange, and other kinds of protoplasm. In these simplest of organisms the whole process of heredity

« PreviousContinue »