Molecular, Cellular, and Tissue Engineering

Front Cover
Taylor & Francis, Apr 6, 2015 - Medical - 1891 pages

Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.

Molecular, Cellular, and Tissue Engineering, the fourth volume of the handbook, presents material from respected scientists with diverse backgrounds in molecular biology, transport phenomena, physiological modeling, tissue engineering, stem cells, drug delivery systems, artificial organs, and personalized medicine.

More than three dozen specific topics are examined, including DNA vaccines, biomimetic systems, cardiovascular dynamics, biomaterial scaffolds, cell mechanobiology, synthetic biomaterials, pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, nanobiomaterials for tissue engineering, biomedical imaging of engineered tissues, gene therapy, noninvasive targeted protein and peptide drug delivery, cardiac valve prostheses, blood substitutes, artificial skin, molecular diagnostics in personalized medicine, and bioethics.

What people are saying - Write a review

We haven't found any reviews in the usual places.

About the author (2015)

Joseph D. Bronzino is the founder and president of the Biomedical Engineering Alliance and Consortium (BEACON) in Hartford, Connecticut. He earned a PhD in electrical engineering from Worcester Polytechnic Institute in Massachusetts. Dr. Bronzino has received the Millennium Award from IEEE/EMBS and the Goddard Award from Worcester Polytechnic Institute for Professional Achievement. He is the author of more than 200 articles and 11 books.

Donald R. Peterson is a professor of engineering and dean of the College of Science, Technology, Engineering, Mathematics, and Nursing at Texas A&M University–Texarkana. He earned a PhD in biomedical engineering from Worcester Polytechnic Institute in Massachusetts. Dr. Peterson’s recent research focuses on measuring and modeling human, organ, and/or cell performance, including exposures to various physical stimuli and the subsequent biological responses. Dr. Peterson has published more than 50 journal articles and 12 reference books.

Bibliographic information