Integrated Computational Materials Engineering (ICME) for Metals: Using Multiscale Modeling to Invigorate Engineering Design with Science

Front Cover
John Wiley & Sons, Jul 23, 2012 - Science - 430 pages

State-of-the-technology tools for designing, optimizing, and manufacturing new materials

Integrated computational materials engineering (ICME) uses computational materials science tools within a holistic system in order to accelerate materials development, improve design optimization, and unify design and manufacturing. Increasingly, ICME is the preferred paradigm for design, development, and manufacturing of structural products.

Written by one of the world's leading ICME experts, this text delivers a comprehensive, practical introduction to the field, guiding readers through multiscale materials processing modeling and simulation with easy-to-follow explanations and examples. Following an introductory chapter exploring the core concepts and the various disciplines that have contributed to the development of ICME, the text covers the following important topics with their associated length scale bridging methodologies:

  • Macroscale continuum internal state variable plasticity and damage theory and multistage fatigue
  • Mesoscale analysis: continuum theory methods with discrete features and methods
  • Discrete dislocation dynamics simulations
  • Atomistic modeling methods
  • Electronics structures calculations

Next, the author provides three chapters dedicated to detailed case studies, including "From Atoms to Autos: A Redesign of a Cadillac Control Arm," that show how the principles and methods of ICME work in practice. The final chapter examines the future of ICME, forecasting the development of new materials and engineering structures with the help of a cyberinfrastructure that has been recently established.

Integrated Computational Materials Engineering (ICME) for Metals is recommended for both students and professionals in engineering and materials science, providing them with new state-of-the-technology tools for selecting, designing, optimizing, and manufacturing new materials. Instructors who adopt this text for coursework can take advantage of PowerPoint lecture notes, a questions and solutions manual, and tutorials to guide students through the models and codes discussed in the text.

 

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

References
31
MACROSCALE CONTINUUM INTERNAL STATE
45
References
88
CONTINUUM THEORY
98
4
128
5
146
6
164
3
178
11
198
Requirements
213
Results for the Idealized Porosity
260
References
328
8
340
9
379
ICME FOR THE CREATION
410
References
422

7
187

Other editions - View all

Common terms and phrases

About the author (2012)

Dr. MARK F. HORSTEMEYER earned a BS degree (with honors) from West Virginia University in mechanical engineering in 1985, an MS degree from Ohio State University in engineering mechanics in 1987, and a PhD from Georgia Institute of Technology in mechanical engineering in 1995. He is currently a professor in the Mechanical Engineering Department at Mississippi State University (2002?present), holding the positions of Chief Technical Officer for the Center for Advanced Vehicular Systems as well as the CAVS Chair in Computational Solid Mechanics. Previous to this, he worked 15 years at Sandia National Labs. He is an ASME and ASM Fellow and has won many awards including the R&D 100 Award, AFS Best Paper Award, Sandia Award for Excellence, Ralph E. Powe Research Award, and Ohio State's Thomas French Alumni Achievement Award.

Bibliographic information