Rainbow Connections of Graphs

Front Cover
Springer Science & Business Media, Feb 23, 2012 - Mathematics - 103 pages

Rainbow connections are natural combinatorial measures that are used in applications to secure the transfer of classified information between agencies in communication networks. Rainbow Connections of Graphs covers this new and emerging topic in graph theory and brings together a majority of the results that deal with the concept of rainbow connections, first introduced by Chartrand et al. in 2006.

The authors begin with an introduction to rainbow connectedness, rainbow coloring, and rainbow connection number. The work is organized into the following categories, computation of the exact values of the rainbow connection numbers for some special graphs, algorithms and complexity analysis, upper bounds in terms of other graph parameters, rainbow connection for dense and sparse graphs, for some graph classes and graph products, rainbow k-connectivity and k-rainbow index, and, rainbow vertex-connection number.

Rainbow Connections of Graphs appeals to researchers and graduate students in the field of graph theory. Conjectures, open problems and questions are given throughout the text with the hope for motivating young graph theorists and graduate students to do further study in this subject.


 

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

Chapter 1 Introduction
1
Chapter 2 Algorithms and Computational Complexity
15
Chapter 3 Upper Bounds for Rainbow Connection Numbers
25
Chapter 4 Dense and Sparse Graphs
57
Chapter 5 Rainbow Connection Numbers of Some Graph Classes
65
Chapter 6 Rainbow Connection Numbers of Graph Products
73
Chapter 7 Rainbow Connectivity
77
Chapter 8 Rainbow VertexConnection Number
89
References
97
Index
101
Copyright

Other editions - View all

Common terms and phrases

Bibliographic information