Introduction to Plasma Physics and Controlled Fusion: Volume 1: Plasma Physics

Front Cover
Springer Science & Business Media, Mar 9, 2013 - Science - 421 pages
TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at Livermore, together with injection of ion current to near field-reversal conditions in the 2XII device. Invention of the tandem mirror has given magnetic confinement a new and exciting dimension. New ideas have emerged, such as the compact torus, surface-field devices, and the ET mirror-torus hybrid, and some old ideas, such as the stellarator and the reversed-field pinch, have been revived. Radiofrequency heat ing has become a new star with its promise of dc current drive. Perhaps most importantly, great progress has been made in the understanding of the MHD behavior of toroidal plasmas: tearing modes, magnetic Vll Vlll islands, and disruptions.
 

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

INTRODUCTION
1
SINGLEPARTICLE MOTIONS
19
PLASMAS AS FLUIDS
53
Contents Representation of Waves 79 e Group Velocity 81 Plasma
146
DIFFUSION AND RESISTIVITY
155
EQUILIBRIUM AND STABILITY
199
KINETIC THEORY
225
NONLINEAR EFFECTS
287
Appendix A Units Constants and Formulas Vector Relations
349
Appendix B Theory of Waves in a Cold Uniform Plasma
355
Sample ThreeHour Final Exam
361
Answers to Some Problems
369
Index
417
Copyright

Other editions - View all

Common terms and phrases

About the author (2013)

Prof. Chen is a plasma physicist with a career extending over 48 years and encompassing both experiment and theory. He has devoted about a decade each to the subfields of magnetic fusion, laser fusion, plasma diagnostics, basic plasma physics, and low-temperature plasma physics. Most plasma students are familiar with his textbook Introduction to Plasma Physics and Controlled Fusion. His current interest is in plasma processing of semiconductor circuits, especially the radiofrequency sources used to make computer chips, and in the physical processes that permit etching millions of transistors on a single chip. To learn more about this, please visit the site for UCLA's Low Temperature Plasma Technology Laboratory (LTPTL): http://www.ee.ucla.edu/~ltptl/. Though formally retired from teaching, Prof. Chen still maintains an active research group with graduate students and postdocs.

Bibliographic information