Topologie algébrique: Chapitres 1 à 4

Front Cover
Springer, Mar 29, 2016 - Mathematics - 498 pages

Ce livre des Éléments de mathématique est consacré à la Topologie algébrique. Les quatre premiers chapitres présentent la théorie des revêtements d'un espace topologique et du groupe de Poincaré. On construit le revêtement universel d'un espace connexe pointé délaçable et on établit l'équivalence de catégories entre revêtements de cet espace et actions du groupe de Poincaré.

On démontre une version générale du théorème de van Kampen exprimant le groupoïde de Poincaré d'un espace topologique comme un coégalisateur de diagrammes de groupoïdes. Dans de nombreuses situations géométriques, on en déduit une présentation explicite du groupe de Poincaré.

 

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

Chapitre Premier Revêtements
1
Chapitre II Groupoïdes
151
Chapitre III Homotopie et groupoïde de Poincaré
229
Chapitre IV Espaces délaçables
339

Other editions - View all

Common terms and phrases

Bibliographic information