Projective Geometry, Volume 2 |
What people are saying - Write a review
We haven't found any reviews in the usual places.
Contents
262 | |
264 | |
268 | |
271 | |
273 | |
277 | |
281 | |
284 | |
14 | |
16 | |
21 | |
23 | |
29 | |
32 | |
33 | |
36 | |
37 | |
40 | |
43 | |
44 | |
45 | |
47 | |
49 | |
50 | |
52 | |
55 | |
58 | |
59 | |
61 | |
63 | |
64 | |
67 | |
70 | |
71 | |
73 | |
74 | |
78 | |
80 | |
81 | |
83 | |
85 | |
89 | |
93 | |
94 | |
95 | |
99 | |
105 | |
106 | |
111 | |
115 | |
116 | |
119 | |
121 | |
123 | |
126 | |
131 | |
133 | |
134 | |
135 | |
138 | |
141 | |
142 | |
144 | |
149 | |
151 | |
155 | |
161 | |
163 | |
169 | |
170 | |
174 | |
177 | |
180 | |
182 | |
186 | |
189 | |
193 | |
196 | |
199 | |
201 | |
202 | |
208 | |
210 | |
212 | |
215 | |
219 | |
222 | |
225 | |
231 | |
235 | |
238 | |
241 | |
244 | |
246 | |
250 | |
253 | |
257 | |
259 | |
287 | |
288 | |
293 | |
295 | |
297 | |
301 | |
304 | |
305 | |
311 | |
315 | |
317 | |
321 | |
325 | |
328 | |
333 | |
335 | |
337 | |
339 | |
342 | |
344 | |
350 | |
352 | |
354 | |
355 | |
357 | |
360 | |
362 | |
364 | |
365 | |
366 | |
369 | |
371 | |
373 | |
375 | |
377 | |
380 | |
385 | |
388 | |
392 | |
395 | |
397 | |
400 | |
401 | |
404 | |
405 | |
406 | |
407 | |
409 | |
411 | |
413 | |
414 | |
416 | |
418 | |
419 | |
421 | |
423 | |
424 | |
425 | |
429 | |
433 | |
435 | |
436 | |
437 | |
438 | |
441 | |
443 | |
446 | |
447 | |
451 | |
454 | |
457 | |
458 | |
460 | |
464 | |
467 | |
473 | |
475 | |
477 | |
479 | |
480 | |
482 | |
483 | |
484 | |
489 | |
490 | |
493 | |
496 | |
501 | |
Other editions - View all
Common terms and phrases
according affine angle assumptions axes axis boundary called carries Chap circle circular collinear collineation columns common complex condition congruent conic consisting contains convex region coördinates COROLLARY corresponding defined definition denoted determined direct displacement Dist distinct double points effects elements elliptic ends equation equivalent Euclidean Euclidean plane EXERCISES exists expressible fixed follows four geometry given harmonic Hence hyperbolic identical infinity interior intersection invariant inversion involution leaving line joining linear matrix measure meets negative obtained opposite ordered ordinary oriented orthogonal line reflection pair parabolic parallel pass pencil perpendicular plane points polar polygon positive projective Proof proved quadric rational rays real points referred regard regulus relation represented respectively rotation satisfy segment sense sense-class separate set of points sides space tangent Theorem theory transformation translation triad triangle triangular region vectors vertices